Curriculum Model Checking: Declarative
Representation and Verification of Properties

Matteo Baldoni and Elisa Marengo

Dipartimento di Informatica — Universita degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
baldoni@di.unito.it,elisa.mrng@gmail.com

Abstract. When a curriculum is proposed, it is important to verify at least three
aspects: that the curriculum allows the achievement of the user’s learning goals,
that the curriculum is compliant w.r.t. the course design goals, specified by the
institution that offers it, and that the sequence of courses that defines the curricu-
lum does not have competency gaps. In this work, we present a constrained-based
representation for specifying the goals of “course design” and introduce a design
graphical language, grounded into Linear Time Logic.

Keywords: formal model for curricula description, model checking, verification
of properties, competence gaps.

1 Introduction and Motivations

As recently underlined by other authors, there is a strong relationship between the
development of peer-to-peer, (web) service technologies and e-learning technologies
[1148]. The more learning resources are freely available through the Web, the more
e-learning management systems (LMSs) should be able to take advantage from this
richness: LMSs should offer the means for easily retrieving and assembling e-learning
resources so to satisfy specific users’ learning goals, similarly to how services are re-
trieved and composed [8]]. As in a service composition it is necessary to verify that, at
every point, all the information necessary to the subsequent invocations is available, in
a learning domain, it is important to verify that all the competencies, i.e. the knowledge,
necessary to fully understand a learning resource are introduced or available before that
learning resource is accessed. The composition of learning resources, i.e. a curriculum,
does not have to show any competency gap. Unfortunately, this verification, is usually
performed manually by the designer, with hardly any guidelines or support [6].

In [11] an analysis of pre- and post-requisite annotations of the Learning Objects
(LO), representing the learning resources, is proposed for automatizing the competency
gap verification. A logic based validation engine can use these annotations to validate
the LO composition. This proposal is inspired by the CocoA system [5], that allows
to perform the analysis and the consistency check of static web-based courses. Com-
petency gaps are checked by a prerequisite checker for linear courses, simulating the
process of teaching with an overlay student model. Pre- and post-requisites are repre-
sented by concepts, elementary pieces of domain of knowledge.

Brusilovsky and Vassileva [5] sketch many other kinds of verification. In our opin-
ion, two of them are particularly important: (a) verifying that the curriculum allows

E. Duval, R. Klamma, and M. Wolpers (Eds.): EC-TEL 2007, LNCS 4753, pp. 432-437] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Curriculum Model Checking 433

to achieve the users’ learning goals, and (b) verifying that the curriculum is compliant
against the course design goals. Verifying (a) is fundamental to guarantee that users will
acquire the desired knowledge. At the same time, manually or automatically supplied
curricula, developed to reach that learning goal, should match the design document,
a curricula model, specified by the institution. Curricula models specify general rules
for designing sequences of learning resources (courses) and can be interpreted as con-
straints. These constraints are to be expressed in terms of concepts and, in general, it
is not possible to associate them directly to a learning resource, as instead is done for
pre-requisites, because they express constraints on the acquisition of concepts, indepen-
dently from the resources that supply them.

This work differs from previous work [4]], where the authors presented an adaptive
tutoring system, that exploits reasoning about actions and changes to plan and verify
curricula. That approach was based on abstract representations, capturing the structure
of a curriculum, and implemented as prolog-like clauses. A procedure-driven planning
was applied to build personalized curricula. The advantage of such planning techniques
is that the only curricula that are tried are the possible executions of the procedure
itself, and this restricts considerably the search space of the planning process. In this
context, we proposed also forms of verification: of competency gaps, of learning goal
achievement, and of whether a curriculum, given by a user, is compliant to the course
design goals. The use of procedure clauses is, however, limiting because they, besides
having a prescriptive nature, pose very strong constraints on the sequencing of learning
resources. Clauses represent what is “legal” and whatever sequence is not foreseen by
the clauses is “illegal”. However, in an open environment where resources are extremely
various, they are added/removed dynamically, this approach becomes unfeasible.

For this reason it is appropriate to take another perspective and represent only those
constraints which are strictly necessary, in a way that is inspired by the so called social
approach proposed by Singh for describing communication protocols for multi-agent
systems and service oriented architecture [12]. In this approach only the obligations are
represented. In our application context, obligations capture relations among the times at
which different competencies are to be acquired. The advantage of this representation
is that we do not have to represent all that is legal but only those necessary conditions
that characterize a legal solution. To make an example, by means of constraints we
can request that a certain knowledge is acquired before some other knowledge, without
expressing what else is to be done in between.

In this paper we present a constraint-based representation of curricula models. Con-
straints are expressed as formulas in a temporal logic (LTL, linear-time logic [[7]) rep-
resented by means of a simple graphical language that we call DCML (Declarative
Curricula Model Language). This kind of logic allows the verification of some proper-
ties of interest for all the possible executions of a model, which in our case corresponds
to the specific curriculum.

2 DCML: A Declarative Curricula Model Language

In this section we describe our Declarative Curricula Model Language (DCML), a
graphical language to represent the relations that can occur among concepts supplied

434 M. Baldoni and E. Marengo

by attending courses. DCML is inspired by DecSerFlow, the Declarative Service Flow
Language to specify, enact, and monitor web service flows [13]]. As such, DCML is
grounded in Linear Temporal Logic (LTL) [[7] and it allows a curricula model to be
described in an easy way, with a rigorous and precise meaning given by the logic repre-
sentation. LTL includes temporal operators such as next-time (¢, the formula ¢ holds
in the immediately following state of the run), eventually (O, ¢ is guaranteed to even-
tually become true), always (O¢, the formula ¢ remains invariably true throughout a
run), until (o« U 3, the formula o remains true until 3). The set of LTL formulas ob-
tained for a curricula model are, then, used to verify whether a curriculum will respect
it [3]. As an example, Fig. [T shows a curricula model expressed in DCML. Every box

Inheritance
Bases of Relational Functional

Logic algebra dependences
) e s
sQL
Use Java
Libraries

Consult API Bases of Applications on
Specifications DB Oracle DB
Trigger

Fig. 1. An example of curricula model in DCML

Advanced Java
Programming

Object
programming —=
in java

Bases of
Programming

contains at least one competency. Boxes/competencies are related by arrows, which rep-
resent (mainly) temporal constraints among the times at which they are to be acquired.
Altogether the constraints describe a curricula model. Hereafter, we describe most of
such elements.

The simplest kinds of constraint concern the existence, absence, or possibility of
acquisition for a certain competency. The existence constraint imposes that a certain
concept k£ must be acquired sooner or later. It captures the fact that a concept charac-
terizes a curriculum, so a student cannot present a plan in which it does not appear. It
is represented by the LTL formula <k, that is £ must eventually become true. Simi-
larly, a course designer can impose that a concept k£ must never appear in a curriculum.
This is possible by means of the absence constraint. The LTL formula O—-k expresses
this fact: it means that k cannot appear. On the diagram these two constraints are given
by marking boxes with the “cardinality” of the concepts (1 for existence and 0 for ab-
sence). When both 0 and 1 appear on the same box, we have a possibility constraint.
The corresponding LTL formula is Gk V O—k. When no cardinality is expressed explic-
itly, possibility is assumed. The last constraint on concepts is represented by a double
box, which means that a concept k£ must belong to the initial knowledge of the student.
In other words, the simple logic formula & must hold in the initial state.

In DCML it is also possible to represent Disjunctive Normal Form (DNF) formulas
as conjunctions and disjunctions of concepts. For lack of space, we do not describe the

Curriculum Model Checking 435

notation here, although an example can be seen in Fig.[Il The interested reader can find
an extended version of this paper that is available in the home page of the authors.

Besides the representation of competencies and of constraints on competencies,
DCML allows to represent relations among competencies. For simplicity, in the follow-
ing presentation we will always relate simple competencies, although it is, of course,
possible to connect DNF formulas.

Arrows ending with a little-ball, express the before temporal constraint between two
concepts: a concept must be acquired before another one. This constraint can be used to
express that, to understand a topic, some other knowledge is required. Notice that if the
antecedent never becomes true, also the consequent must be invariably false. ky before
ko corresponds to the LTL formula —ke U k;.

One can express that a concept must be acquired immediately before some other by
means of a triple line arrow that ends with a little-ball. The constraint “k; immediate
before ko” imposes that k; is acquired before ko and that either ks is true in the next
state (w.r.t. when k; is acquired) or it is never acquired. Immediate before is stronger
than before because it imposes that two concepts have to be acquired in strict sequence.
The LTL formula for immediate before is —ko U k1 A O(k1 D (Oka vV O-k2)), that is
k1 before ko and whenever k1 holds, either in the next state ks holds or k5 never holds.

The implication relation specifies, instead, that if a certain concept holds, some other
concept must be acquired sooner or later. The acquisition of the consequent is imposed
by the truth value of the antecedent, but, in case this one is true, the implication does not
specify when the consequent is to be achieved (it could be before, after or in the same
state as the antecedent). ky implies ko is expressed by the LTL formula Ok; D ks

The immediate implication instead, specifies that the consequent must hold in the
state right after the one in which the antecedent is acquired. This does not mean that it
must be acquired in that state, but only that it cannot be acquired after. This is expressed
by the LTL implication formula in conjunction with the constraint that whenever k;
holds, ks holds in the next state: Ok D Cko A O(ky D Okz). Implication and imme-
diate implication are graphically represented with an arrow that starts with a little-ball
and with a triple line arrow that starts with a little-ball.

The last two kinds of temporal constraints are succession and immediate succession
The succession relation specifies that if k; is acquired, afterwards k9 is also achieved.
Succession is expressed by the LTL formula $Cky D (Oka A (mk2 U k1)). While in
the before relation, when the antecedent is never acquired also the consequent must be
false, in the succession relation this is not relevant. This behaviour is due to the fact
that the succession specifies a condition of the kind: if k; then ko. The before, instead,
represents a constraint without any conditional premise. The fact that the consequent
must be acquired after the antecedent differentiates implication from succession.

The immediate succession imposes that the acquisition of the consequent must hap-
pen either in the same state the antecedent is acquired or in the state immediately after
(not before nor later). The immediate succession is expressed by the LTL formula:
Oky D (Cka A (mk2 U k1)) A O(k1 D Oks). The representation of (immediate)
succession, see Fig.[Il is an (triple) arrow that starts and ends with a little-ball.

The graphical notations for “negative relations” is very intuitive: two vertical lines
break the arrow that represents the constraint. Some examples are shown in Fig.[1l

436 M. Baldoni and E. Marengo

ki1 not before ko specifies that the concept k; cannot be acquired before or in the
same state of the concept k2. The LTL formula is k1 U (k2 A =k). Notice that this is
not obtained by simply negating the before relation but it is weaker because the negation
would impose the acquisition of the concepts specified as consequents, the not before
does not. The not immediate before is translated exactly in the same way of the not
before. Indeed, it is a special case of not before. This happens because the acquired
knowledge cannot be forgotten.

By means of k; not implies ko we express that the acquisition of the concept k; im-
plies that ko will never be acquired. We express this by the LTL formula $k; D O—ks.
Again, we choose to use a weaker formula than the natural negation of the implication
relation, that is Oky A O—kso. ky not immediate implies ko constraint imposes that when
the concept k; is acquired, in the immediately subsequent state, the concept k2 must be
false. Afterwards, the truth value of ko does not matter (it is weaker than —(ky immedi-
ate implies ks)). The corresponding LTL formula is Gk D (O-k2 V O(k1 A O—k2)).

The not succession, and the not immediate succession are weaker versions of, respec-
tively, negation of succession and of immediate succession. The first one imposes that
a concept cannot be acquired after another. This means that it could be acquired before,
or it will always be false. The LTL formula is $ky D (O—kg V k1 not before ks). The
second imposes that if a concept is acquired in a certain state, in the state that follows
another concept must be false: Cki D (O—ky V ky not before ko V O (k1 A O—k2)).

3 Conclusions

The presented work is an evolution of earlier works [2/4]. In those works, we semanti-
cally annotated learning objects with the aim of building compositions of new learning
objects, based on the user’s learning goals and by exploiting planning techniques. That
proposal was based on a different approach, that relied on the experience of the au-
thors in the use of techniques for reasoning about actions and changes. Of course, the
new proposal, presented in this paper, can be applied also to learning objects, given a
semantic annotation of theirs, as introduced in the cited works. In [1]] we discuss the
integration, into the Personal Reader Framework [9], of a verification web service that
implements the explained techniques.

In particular, in this work we have introduced a graphical language to describe tem-
poral constraints posed on the acquisition of competencies (supplied by courses). In the
extended version, that is available on-line, we show how to use UML activity diagrams
to specify sets of curricula, and we show how to translate them into Promela programs.
Such programs can be used by the SPIN model checker [10] to verify whether the cur-
riculum respects the DCML model. Model checking can also be applied for checking
the achievement of the user’s learning goals and the presence of competency gaps.

In [3] we extend the current proposal so as to include a representation of the pro-
ficiency level at which a competency is owned or supplied, as suggested in [6]. The
key idea is to associate to each competency a variable, having the same name as the
competency, which can be assigned natural numbers as values. The value denotes the
proficiency level; zero means absence of knowledge. The next step will be to give a
structure to competencies, e.g. by defining a proper ontology, for allowing more flexi-
ble forms of reasoning and verification.

Curriculum Model Checking 437

We are currently working on an automatic translation from a textual representation of
DCML curricula models into the corresponding set of LTL formulas and from a textual
representation of an activity diagram, that describes a curriculum (comprehensive of
the description of all courses involved with their preconditions and effects), into the
corresponding Promela program. We are also going to realize a graphical tool to define
curricula models by means of DCML.

Acknowledgements. The authors would like to thank Cristina Baroglio, and also Vi-
viana Patti and Ingo Brunkhorst, for the helpful discussions. This research has partially
been funded by the European Commission and by the Swiss Federal Office for Ed-
ucation and Science within the 6th Framework Programme project REWERSE num-
ber 506779 (ct. http://rewerse.net), and it has also been supported by MIUR PRIN 2005
“Specification and verification of agent interaction protocols” national project.

References

1. Baldoni, M., Baroglio, C., Brunkhorst, I., Marengo, E., Patti, V.: Curriculum Sequencing and
Validation: Integration in a Service-Oriented Architecture. In: Proc. of EC-TEL 2007 (2007)

2. Baldoni, M., Baroglio, C., Henze, N.: Personalization for the Semantic Web. In: Eisinger, N.,
Matuszyniski, J. (eds.) Reasoning Web. LNCS, vol. 3564, pp. 173-212. Springer, Heidelberg
(2005)

3. Baldoni, M., Baroglio, C., Marengo, E.: Curricula Modeling and Checking. In: Proc. of
AT*IA 2007, Rome, Italy. LNCS (LNAI), Springer, Heidelberg (2007)

4. Baldoni, M., Baroglio, C., Patti, V.: Web-based adaptive tutoring: an approach based on logic
agents and reasoning about actions. Artificial Intelligence Review 22(1), 3-39 (2004)

5. Brusilovsky, P., Vassileva, J.: Course sequencing techniques for large-scale web-based edu-
cation. Int. J. Cont. Engineering Education and Lifelong learning 13(1/2), 75-94 (2003)

6. De Coi, J.L., Herder, E., Koesling, A., Lofi, C., Olmedilla, D., Papapetrou, O., Sibershi, W.:
A model for competence gap analysis. In: Proc. of WEBIST 2007, INSTICC Press (2007)

7. Emerson, E.A.: Temporal and model logic. Handbook of Theoretical Computer Science B,
997-1072 (1990)

8. Farrell, R., Liburd, S.D., Thomas, J.C.: Dynamic assebly of learning objects. In: Proc. of
WWW 2004, New York, USA (2004)

9. Henze, N., Krause, D.: Personalized access to web services in the semantic web. In: Cruz, 1.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.)
ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

10. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2003)

11. Melia, M., Pahl, C.: Automatic Validation of Learning Object Compositions. In: Proc. of
IT&T’2005: Doctoral Symposium, Carlow, Ireland (2006)

12. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE Com-
puter 31(12), 40—47 (1998)

13. van der Aalst, WM.P,, Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Nufiez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
Springer, Heidelberg (2006)

	Introduction and Motivations
	DCML: A Declarative Curricula Model Language
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

