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Abstract - Applied to microarray data, Nonnegative 
Matrix Factorization (NMF) can be viewed as a 
generalized clustering algorithm allowing for gene 
overlaps – an important feature in this domain where 
genes can be involved in several biological processes. In 
this paper we present siNMF, a generalization of NMF that 
can simultaneously factorize a gene expression matrix and 
a matrix of transcription regulatory influences. Thus, 
siNMF constructs gene clusters taking into account not just 
expression information, but also background knowledge on 
potential regulatory factors of the clusters. A preliminary 
application of the algorithm to a real-life pancreatic 
cancer dataset shows the feasibility of our approach. 

Keywords: Gene expression data / microarray analysis, 
clustering with transcription factor regulatory information. 

 

The introduction of high throughput technologies for 
measuring gene expression, such as microarrays, has 
allowed a revolutionary transition from the exploration of 
the expression of a handful of genes to that of entire 
genomes. However, despite its  enormous potential, 
microarray data has proved difficult to analyze, partly due 
to the significant amount of noise, but also due to the large 
number of factors that influence gene expression (many of 
which are not at the mRNA/transcriptome level) as well as 
the complexity of their interactions. 

One of the most successful microarray data analysis 
methods has proved to be clustering (of genes and/or 
samples), and a large variety of such methods have been 
proposed and applied to real-life biological data. This large 
body of work, impossible to extensively review here, has 
emphasized important limitations of existing clustering 
algorithms: 
(1) Most clustering methods produce non-overlapping 
clusters. However, since genes are typically involved in 
several biological processes, “non-overlapping” clustering 
methods, such as hierarchical clustering (HC) [2], self-
organizing maps (SOM) [9], k-means clustering, etc., tend 

to be unstable, producing different gene clusters for only 
slightly different input samples (e.g. in the case of HC), or 
depending on the choice of initial conditions (as in the case 
of SOM, or k-means). Algorithms allowing for overlapping 
clusters, such as fuzzy k-means [4] achieved significant 
improvements w.r.t. “non-overlapping” clustering, but they 
still have the problems discussed below. 
(2) Most algorithms perform clustering along a single 
dimension comparing e.g. genes w.r.t. all the available 
samples, whereas in reality genes have coordinated 
expression levels only for certain subsets of conditions. 
Algorithms dealing with this problem, such as biclustering 
[10], coupled-two way clustering (CTWC) [3], ISA 
(iterative signature) [1] have other problems mostly related 
to the control of overlap between biclusters. 
(3) Although genes are subject to both positive and 
negative influences from other genes, the robustness of 
biological systems requires that an observed change in the 
expression level of a given gene is the result of either a 
positive or a negative influence rather than a complex 
combination of positive and negative influences that partly 
cancel out each other (as in the case of Principal 
Component Analysis). 

Nonnegative Matrix Factorization (NMF) [7] deals with 
this problem by searching for nonnegative decompositions 
of (nonnegative) data. The observed localized nature of the 
decompositions seems to be a byproduct of the 
nonnegativity constraints [7]. 

Recently, Brunet at al [5] applied NMF for clustering 
samples in a non-overlapping mode for three cancer 
datasets. On the other hand, Kim and Tidor [6] used NMF 
to cluster genes in the context of a large dataset of yeast 
perturbation experiments (spotted arrays). Although NMF 
has the tendency of producing sparse representations, the 
factorizations obtained were subjected to thresholding and 
subsequent reoptimization to obtain sufficiently sparse 
clusters. 

Unfortunately however, microarray data are noisy and it 
might be useful to be able to take into account any 
background knowledge that may be available. For example, 



data about transcription factor binding1 or curated 
databases about transcription regulation could be used not 
only to interpret the resulting clusters (in terms of the 
potential regulatory modules that may be driving the 
coordinated expression of the cluster genes), but also to 
guide the clustering process itself. 

In this paper we show how Nonnegative Matrix 
Factorization (NMF) can be generalized to take into 
account data about transcription regulation when 
constructing clusters. Our method is called “simultaneous 
Nonnegative Matrix Factorization” (siNMF) since it 
factorizes gene expression and transcription regulation data 
simultaneously. 

Using the Transcription Regulatory Element Database 
TRED as background knowledge, we applied our 
factorization algorithm to a pancreatic cancer dataset and 
show that it was able not only to correctly separate the 
tumor samples from the normal ones (without being 
provided with class information), but also to recover the 
associated regulatory factors, which may be driving the 
expression of the genes responsible for this disease.  

Given a gene expression matrix Xsg (the index s denotes 
samples, while g stands for genes) and a transcription factor 
regulatory matrix Bfg (which is 1 whenever transcription 
factor f regulates gene g), siNMF simultaneously factorizes 
the two matrices as follows: 

⋅≈
c cgscsg SAX                  (1) 

⋅≈
c cgfcfg SCB                  (2) 

with the additional nonnegativity constraints:   

Asc ≥ 0,  Scg ≥ 0,  Cfc ≥ 0.               (3) 

where Xsg is the expression level of gene g in data sample s, 
Asc the expression level of the biological process (cluster) c 
in sample s, Scg the membership degree of gene g in c and 
Cfc the involvement of transcription factor f in the 
regulation of cluster c. 

Note that the gene cluster membership matrix S is 
common to the two factorizations, as it is influenced both 
by the gene expression data X, as well as by the regulatory 
data B. The nonnegativity constraints (3) express the 
obvious fact that expression levels, membership degrees 
and regulatory factor involvements cannot be negative. 

More formally, the factorization (1-3) can be cast as a 
constrained optimization problem: 

                                                           
1 For example, location analysis data resulting from ChIP on chip 
experiments (chromatin immunoprecipitation). 
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Frobenius norm of a matrix). 
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error terms and was taken in the following experiments to 
be 
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The optimization problem (4) can be solved using 
multiplicative update rules in a manner similar to Lee and 
Seung’s seminal Nonnegative Matrix Factorization (NMF) 
algorithm [8] (ε is a small regularization parameter): 

siNMF(X, A0, S0) →→→→ (A,S) 
A ← A0, S ← S0, C ← C0   (typically A0,S0,C0 are initialized 
randomly) 
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until convergence 
normalize the rows of S to unit norm by taking advantage 
of the scaling invariance of the factorization: SDS ⋅← −1 , 

DAA ⋅← , DCC ⋅← , where =
g cgSdiagD 2 . 

Note that such a factorization can be viewed as a “soft” 
clustering algorithm allowing for overlapping gene clusters, 
since we may have several significant Scg entries on a given 
column g of S (so a gene g may “belong” to several clusters 
c). The final normalization of the rows of S renders the 
resulting clusters comparable to each other. 

The algorithm above constructs the gene clusters S 
guided by both gene expression data and regulatory data B. 
If we would not want the construction of the gene clusters 
to be influenced by the regulator binding data B, we would 
have to use the following update rule for S: 
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In the following, we assume that the gene expression 
data is given in an ns× ng matrix X, where ns and ng are the 
numbers of samples and genes respectively, so that Xsg 
represents the expression level of gene g in sample s. 



A sparse factorization X ≈ A⋅S, B ≈ C⋅S will be 
interpreted as a simultaneous clustering of the genes into 
overlapping clusters c corresponding to the rows Scg of S 
- w.r.t. the expression data X, and   
- w.r.t. the transcription regulation data B, resulting in 

gene regulatory programs Cfc that may explain the 
concerted expression of the genes in the cluster c. 

Note that clusters and regulatory programs can be 
overlapping, since the columns of S and C may have 
several significant entries. However, although overlaps are 
allowed, the algorithm will not produce highly overlapping 
clusters, due to the sparseness constraints. This is unlike 
many other clustering algorithms that allow clusters to 
overlap, which have to resort to several parameters to keep 
excessive cluster overlap under control. 

Although the main goal of this paper is the presentation 
of a new clustering algorithm able to deal with transcription 
regulatory data as background knowledge rather than 
obtaining new biological insights, we also briefly discuss 
our initial attempts at applying our algorithm to a pancreatic 
cancer microarray dataset. 

Despite the enormous recent progress in understanding 
cancer at a molecular level, the precise details are still 
elusive for many types of carcinomas. Pancreatic cancer is a 
particularly aggressive disease, with a very poor prognosis, 
requiring a more precise understanding of its molecular 
pathogenesis. The technological progress initiated by the 
introduction of gene expression microarrays about a decade 
ago has enabled large scale whole genome studies with the 
aim of identifying disease-specific genes. Unfortunately, 
the gene sets obtained as a result of clustering or differential 
expression analysis are hard to interpret, and the 
transcription regulatory programs controlling them are 
difficult to determine. 

In the following, we describe the application of our 
simultaneous factorization algorithm to a pancreatic ductal 
adenocarcinoma (PDAC) dataset produced in the 
framework of the  GENOPACT project. 

The dataset contains microarray measurements (using 
Affymetrix U133 Plus 2.0 whole genome chips) for 38 pairs 
of PDAC and respectively normal samples (76 samples in 
total). After filtering out the probe-sets (genes) with 
relatively low expression as well as those with a nearly 
constant expression value2, we were left with 12209 probe-
sets. The gene expression matrix was subsequently 
logarithmized (since typical gene expression values are log-
normally distributed) and given to the siNMF algorithm 
together with transcription regulatory data retrieved from 
the Transcription Regulatory Element Database TRED 

                                                           
2 Only genes with an average expression value over 100 and with 
a standard deviation above 50 were retained. 

[11]. (TRED is expert curated and thus highly reliable. 
However, its main limitation is the relatively low coverage 
of transcription factor regulation, as it includes data on only 
about 154 factors (including families) and 2969 target 
genes.) 

An important parameter of the factorization is its 
internal dimensionality (the number of clusters nc). To 
avoid overfitting, we estimated the number of clusters nc as 
the number of dimensions around which the change in 
relative error dε /dnc of the factorization of the real data 
“reaches from above” the change in relative error obtained 
for a randomized dataset (similar to [6]) – see Figure 1. 
This analysis estimated the internal dimensionality of the 
dataset to be around nc=5. 

Running siNMF with β0=1 and nc=5 on the complete set 
of 12209 produced the sample clusters depicted in Figure 2. 
Note that cluster 2 recovers relatively well3 the distinction 
between normal and tumor samples genes, although the 
algorithm was never provided with class information 
related to the samples. The associated regulatory programs 
C are shown in the Annex. 

 
Figure 1. Determining the internal dimensionality of the 

pancreatic cancer dataset 

The largest regulatory program also belongs to cluster 2. 
The top transcription factors presumably controlling this 
cluster are given in the Table below. Many of these 
transcription regulators have been mentioned in the 
literature in relation with pancreatic cancer. For example, 
SP1 is known to be involved in pancreatic cancer [12], as is 
the critical tumor suppressor p53 [13]. JUN, a component 
of the AP1 transcription complex is a well-known oncogene 
and has been frequently linked to pancreatic cancer (e.g. 
[14]). 

 
                                                           
3 Certain “normal” samples (such as N30308 and N40726) which 
in our analysis are “closer” to the tumor samples than to the other 
normal ones were later reanalyzed histologically and found to be 
highly fibrotic (pancreatic tumor tissue is typically very fibrotic 
and the respective normal samples were possibly collected from a 
site too close to the tumoral tissue). 



Transcription factor Coefficient in C 
SP 4.95463 
SP1 4.442609 
AP2 4.075412 
TFAP2A 4.060308 
p53 3.8224 
TP53 3.797026 
NFKB 3.39351 
AP1 3.168997 
JUN 3.168997 
NFKB1 3.098774 
AR 2.537124 
CREB 2.4364 
CREB1 2.411284 
ETS1 1.842133 
EGR1 1.74613 
CEBPA 1.707971 
CEBP 1.681746 
MYB 1.548494 
ER 1.542522 
RAR 1.500031 
NFI 1.458183 
RELA 1.448307 
NFIC 1.441207 
RARA 1.435847 
SMAD 1.373663 
STAT 1.273818 
SP3 1.214316 
HIF 1.192895 
SPI1 1.180106 
OCT 1.177372 
USF1 1.127539 
HIF1A 1.078189 
PPAR 1.052136 
ATF1 1.048764 
POU2F1 1.034346 
ESR1 0.995088 
STAT1 0.97143 
STAT3 0.90882 

Although widely used in microarray data analysis, 
existing clustering algorithms have serious problems, the 
most important one being related to the fact that biological 
processes are overlapping rather than isolated. Microarray 
measurements are also very noisy, which can only be 
compensated by additional background knowledge, such as 
regulatory influences.  

In this paper we have introduced a clustering algorithm 
capable of taking into account not just expression 
information, but also background knowledge on potential 
transcription regulatory factors of the clusters. A key 
ingredient of this algorithm is the nonnegativity constraint, 
which ensures the sparseness of the factorizations. Our 
preliminary results on a real-life pancreatic cancer dataset 
are encouraging, but a more detailed biological analysis 
will be the focus of subsequent work. (Larger versions of 
the Figures can also be found at 
http://www.ai.ici.ro/biocomp07/.) 

Figure 2. The sample clusters (matrix A) in the pancreatic 
cancer dataset 

A(samples,clusters)
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POU2F3
HOXD8
HOXD10
HOXB9
HOXB8
ATF
HOXB7
HOXB3
HOXB2
HOXB1
ATF5
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TFAP2C
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TFAP2B
EGR2
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SPI1
SP3
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CEBP
CEBPA
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ETS1
ER
RAR
NFI
NFIC
RARA
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MYB
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