
Data & Knowledge Engineering 59 (2006) 397–434

www.elsevier.com/locate/datak
The ramification problem in temporal databases:
Changing beliefs about the past

Nikos Papadakis *, Grigoris Antoniou, Dimitris Plexousakis

Department of Computer Science, University of Crete, Institute of Computer Science, FORTH, GR-711 10 Heraklion, Crete, Greece

Received 21 February 2005; accepted 21 September 2005
Available online 18 October 2005
Abstract

In this paper we study the ramification problem in the setting of temporal databases. Standard solutions from the lit-
erature on reasoning about action are inadequate because they rely on the assumption that fluents persist, and because
actions have effects on the next situation only. In this paper we provide a solution to the ramification problem based
on an extension of the situation calculus and the work of McCain and Turner. More specifically, we study the case where
the effects of an action refer to the past, a particularly complex problem.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Ramification problem; Temporal databases; Common sense reasoning; Knowledge representation and reasoning; Belief
revision
1. Introduction

The ramification and qualification problems [9] are hard problems that arise in robotics, software engineer-
ing, in databases, and generally speaking all systems exhibiting a dynamic behavior. In this paper we consider
the case of temporal databases.

Let us illustrate the problems. Suppose we are interested in maintaining a database that describes a simple
circuit, which has two switches and one lamp (Fig. 1A).

The circuit�s behavior is described by the following integrity constraints. First, when the two switches are
up, the lamp must be lit. Second, if one switch is down then the lamp must not be lit. The integrity constraints
are expressed as the following formulas, employing predicates up and light:
0169-0

doi:10.

* Co
E-m
upðs1Þ ^ upðs2Þ � light

:upðs1Þ � :light

:upðs2Þ � :light
23X/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

1016/j.datak.2005.09.003

rresponding author.
ail addresses: npapadak@csd.uch.gr (N. Papadakis), ga@csd.uch.gr (G. Antoniou), dp@csd.uch.gr (D. Plexousakis).

mailto:npapadak@csd.uch.gr
mailto:ga@csd.uch.gr
mailto:dp@csd.uch.gr

up(s2)

(A)

up(s1)

light

relay

up(s1) up(s2)

up(s3)

light

(B)

Fig. 1. The circuit.

398 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
Action toggle_switch changes the situation of a switch as follows:
toggle switchðsÞ � upðsÞ if :upðsÞ
toggle switchðsÞ � :upðsÞ if upðsÞ
The above propositions describe the direct effects of the action toggle_switch. A situation is called consistent
when it satisfies all integrity constraints. Assume that the circuit is in situation S ¼ fupðs1Þ;:upðs2Þ;:lightg.
The situation S is consistent, because it satisfies all integrity constraints. Now assume that we execute the
action toggle_switch(s2). This action has a sdirect effect to change the state of switch s2 from :upðs2Þ to
up(s2). Now the situation of the circuit is S1 ¼ fupðs1Þ; upðs2Þ;:lightg. This situation is inconsistent, because
it violates the first integrity constraint. The reasonable conclusion is that the lamp must be lit. So the final
situation is S2 = {up(s1), up(s2), light}. The change of the condition of the lamp is the indirect effect of the
action toggle_switch(s2). Notice that indirect effects exist because of the presence of integrity constraints.
The ramification problem refers to the concise description of the indirect effects of an action in the presence

of constraints.
Several ways for addressing the ramification problem have been suggested in the literature. The majority of

them are based on the situation calculus [9]. The situation calculus is a second-order language that represents
the changes which occur in a domain, as results of actions. One possible evolution of the world is a sequence of
actions and is represented by a first-order term. The situation at which no action has occurred yet, is called the
initial situation (S0). There is a binary function do(a,S) which yields the new situation resulting from the exe-
cution of action a in the situation S. Predicates, called fluents, may change truth value from one situation to
another. Similarly, one can represent functions whose values are dependent on the situations on which they are
evaluated (functional fluents).

The simplest of the technique suggested in the literature is the minimal-change approach [21]. Thiss suggests
that, when an action occurs in a situation S, we need to find a consistent situation S 0 which has fewer changes
from the situation S (S 0 is closer to S than to any other situation).

Another solution is the categorization of fluents [5–7]. Fluents are categorized as primary and secondary. A
primary fluent may change only as a direct effect of an action, while a secondary fluent may change only as an
indirect effect of an action. After an action takes place, we choose the situation with the fewest changes in pri-
mary fluents. The categorization of fluents solves the ramification problem only if all fluents can be catego-
rized. If some fluents are primary for some actions and secondary for some others this solution is not
satisfactory.

As we can observe from the above examples, the change of fluent f�s truth value potentially affects the truth
value of some fluents, while it does not affect that of the others. We define a binary relation I between fluents
as follows: if (f, f 0) 2 I, then a change in fluent f�s value may affect the value of f 0. In the above example,
(up(s1), light) 2 I, whereas (up(s1), upðs2ÞÞ 62 I . A fluent could change or remain unchanged after an action. This
depends on the context in which an action takes place.

Causal relationships [8,19,20] capture this dependence between an action and an indirect effect. A causal
relationship has the form

1 Qu
tempo

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 399
� causes q if U
where � is an action, q is the indirect effect and U is the context. The context is a fluent formula. Each causal
relation must be evaluated, after the execution of the action �, if and only if the context is true. The binary
relation I defines the dependence that exist between context U and fluent q.

In the above example, there are four causal relationships
upðs1Þ causes light if upðs2Þ
upðs2Þ causes light if upðs1Þ
:upðs1Þ causes :light if >
:upðs2Þ causes :light if >
In our work we adopt the idea of causal relationship and use it in the context of temporal databases. Let us
illustrate the problem by means of an example. Assume that if a public employee commits a misdemeanor,
then for the next 5 months s/he is considered illegal, except if s/he receives a pardon. When a public employee
is illegal, then s/he must be suspended and cannot be promoted for the entire time interval over which s/he is
considered illegal. Also, when a public employee is suspended, s/he cannot receive a salary until the end of the
suspension period. Each public employee is graded for his/her work. If s/he receives a bad grade, then s/he is
assumed to be a bad employee. If s/he receives a good grade, then s/he is assumed as a good employee and s/he
may take a bonus if not suspended. Each public employee receives an increase and a promotion every 2 and 5
years, respectively, if not illegal.

We can identify six actions, misdemeanor, take_pardon, good_grade, bad_grade, take_promotion and
take_increase, and seven fluents, good_employee, illegal, take_salary, take_bonus, position(p, l), suspended

and salary(p, s). The fluent position(p, l, t1) means that the public worker is at position l for the last t1 months
while salary(p, s, t1) means that the public worker has been receiving salary s for the last t1 months. The direct
effects of the six actions are expressed in propositional form by the following rules:1
occurðmisdemeanorðpÞ; tÞ � illegalðp; t1Þ ^ t1 2 ½t; t5� ð1Þ
occurðtake pardonðpÞ; tÞ � :illegalðp; t1Þ ^ t1 2 ½t;1Þ ð2Þ
occurðbad gradeðpÞ; tÞ � :good employeeðp; t1Þ ^ t1 2 ½t;1Þ ð3Þ
occurðgood gradeðpÞ; tÞ � good employeeðp; t1Þ ^ t1 2 ½t;1Þ ð4Þ
occurðtake increaseðpÞ; tÞ ^ salaryðp; s; 24Þ � salaryðp; sþ 1; 0Þ ð5Þ
occurðtake promotionðpÞ; tÞ ^ positionðp; l; 60Þ � positionðp; lþ 1; 0Þ ð6Þ
where t is a temporal variable and the predicate occur(misdemeanor(p), t) denotes that the action misde-

meanor(p) is executed at time t. The preconditions of the actions take_increase(p) and take_promotion(p) are
Possðtake increaseðpÞ; tÞ � salaryðp; s; 24Þ ^ :illegalðp; tÞ ^ good employeeðp; tÞ
Possðtake promotionðpÞ; tÞ � positionðp; l; 60Þ ^ :illegalðp; tÞ ^ good employeeðp; tÞ
Also we have the following integrity constraints which give rise to indirect effects of the six actions.
illegalðp; t1Þ � suspendedðp; t1Þ ð7Þ
suspendedðp; t1Þ � :take salaryðp; t1Þ ð8Þ
:suspendedðp; tÞ ^ good employeeðp; tÞ � take bonusðp; tÞ ð9Þ
:good employeeðp; t1Þ � :take bonusðp; t1Þ ð10Þ
:suspendedðp; t1Þ � take salaryðp; t1Þ ð11Þ
antifiers are omitted in the expression of these propositions. They are considered to be implicitly universally quantified over their
ral and non-temporal arguments.

400 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
The solutions which have been proposed for the ramification problem in conventional databases
[13,1,5,7,15,19–21] cannot solve the ramification problem in temporal databases because they determine the
direct and indirect effects only for the next situation. Also they assume that fluents persist, that is, no change
in their truth value occurs without an action taking place.

In a temporal database we need to describe the direct and indirect effects of an action not only in the imme-
diately resulting next situation but also possibly for many future situations as well. In the above example, the
action misdemeanor(p) has the indirect effect that the public worker is in suspension for the next 5 months. In
these 5 months, the action good_grade, could occur, but even if this happens, the employee cannot take up a
promotion. This means that the world changes situations while the direct and indirect effects of some action
still hold. Also, in this time span, other actions may occur leading to many different situations. Furthermore, 5
months after the execution of the action misdemeanor the situation changes without an action taking place
(because the public worker is no longer considered illegal). This means that the transition from one situation
to the next could happen without an action taking place. Hence, fluents cannot be assumed to persist until an
action changes their truth value.

In our previous work [13,14] we have addressed the ramification problem in a temporal database when
change refers to the future (an outline of the approach is present in Section 3.1). Here we study the problem
where change may refer to the past. This case is more complex and poses various problems. We extend the
remainder of our previous technique to solve the ramification problem in this case. This paper is structured
as follows: in Section 2 we give some definitions, in Section 3 we review the previous work. In Section 4 we
address the ramification problem in the case that an action could change our belief about the past. In Section
5.1 we present a solution for the case that an action can change the truth value of all fluents in the past. In
Section 5.2 we present a solution for the case that an action can change the truth value only of some fluents
in the past. In Section 5.3 we present a solution for the case that an action can change the truth value of all
fluents in the past but its effects start to hold from the current time point. Finally in Section 6 we present a
brief summary and future work.

2. Definitions

In this section we extend the situation calculus [9] in order to solve the ramification problem in case an
action could change some beliefs about the past.

• Each fluent f is represented as f(L), which means that fluent f is true in the time intervals that are contained
in list L. Each element of list L is a time interval [a,b], a < b. :f ðL0Þ means that fluent f is false in the time
intervals that are contained in list L 0. It must hold that L \ L 0 = ;. List L (or L 0) is the last element of the
fluent. This mean that each n-place fluent becomes an n + 1-place fluent, the n + 1st argument being the list
L. The other elements do not change.

• We define functions start(a) and end(a), where a is an action. The former function returns the time moment
at which action a starts while the latter returns the time moment at which it finishes.

• Actions are ordered as follows: For instantaneous actions2 a1 < a2 < � � � < an, when start(a1) < start(a2) <
� � � < start(an). Also, for instantaneous actions, start(a) = end(a) holds. In this case, two actions a1,a2 will
be executed concurrently when start(a1) = start(a2) holds.

• We define the predicate occur(a, t, t1) which means that action a is executed at time moment t but the effects
of it is referred to time moment t1. In the case that t1 < t the action changes the belief about the past.

• We define function start(S) and end(S), where S is a situation. The former function returns the time moment
at which situation S starts while the latter returns the time moment at which it finishes.

• We define the function FluentHold(S, t) which returns the set of all fluents which are true in the time
moment t.3
2 In this paper we consider only instantaneous actions.
3 Notice that the above representation allows one situation to contain information that some fluents will be true in the future,

e.g., FluentHold({f1([5,9]), f([10,20])},6) = {f1}.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 401
• We define the functional fluent fa(a) as current_moment � start(a), that is, the duration of execution of
action a until the present moment.

• We extend predicate poss(a,S) as follows:
poss({a1,a2, . . . ,an},S) = §i=1,. . .,nposs(ai,S). This means that the actions {a1,a2, . . . ,an} can execute con-
currently if and only if the preconditions of each action are true.

• We define as a legal (consistent) situation, a situation in which all integrity constraints are satisfied.

3. Previous work

3.1. Our previous work

In our previous work [13,14] we have dealt with the case that actions may only change the future. As we
have already said, the previous approach to solve the ramification problem is inadequate in the case of tem-
poral databases. They fall short of adequately addressing the problem in a temporal context because they only
determine the direct and indirect effects of actions for the subsequent situation. Also they are based on the
persistence of fluent assumption (i.e., no fluent may change the truth value without an action taking place).

The above weaknesses can be alleviated by constructing a correspondence between situations and actions
with time. Some proposal for that has been done in [8,17,18,12,11,14]. We suggest the correspondence that
appears in Fig. 2. There are three parallel axes: the situations axis, the time axis and the actions axis. When
an action takes place, the database changes into a new situation.

We extended a previous proposal by McChain and Turner [8]. McChain and Turner suggest that for each
action A there is a dynamic rule
occurðAÞ �
^

F

which denotes the direct effects of action. Also for each fluent f there are two static rules, one for it and one for
its negation
G � f

B � :f ;
where G and B are fluent formulas. The static rules show the indirect effects.
We extend the above proposal as follows: An action A is represented as A(t) which means that action A is

executed at time t. For each action A we define one axiom of the form
A �
^

F iðL0iÞ;
where F iðL0iÞ is fiðL0iÞ or :fiðL0iÞ. The above rules describe the direct effects of an action. For each fluent f we
define two rules
Gðt; t0Þ � f ð½t; t0�Þ
Bðt; t0Þ � :f ð½t; t0�Þ
s0 s1 s2 s3 situation axis

t0 t1 t2 t3 t4 t5 time axis

a1 a2 a3 action axis

Fig. 2. The correspondence among time–actions–situations.

402 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
where G(t, t 0) is a formula which, when true (at time point t), causes fluent f to become true at the time interval
[t, t 0] (respectively for B(t, t 0)). The above symbolism is equivalent with G(t,L 0) � f(L 0) Bðt; L0Þ � :f ðL0Þ, where
L 0 = [t, t 0]. These rules encapsulate the indirect effects of an action. The former rules are dynamic because they
are evaluated after the execution of an action, while the latter are static because they are evaluated at every
time point at which the corresponding fluent is false.

Consider the public employee example from the introduction. In that example the dynamic rules are rules
(1)–(6), while the static rules are
4 No
than o
f5 ^ f6
R ¼ fillegalðp; LÞ � suspendedðp; LÞ; suspendedðp; LÞ � :take salaryðp; LÞ;
:suspendedðp; L1Þ ^ good employeeðp; L2Þ � take bonusðp; L1 \ L2Þ;
:good employeeðp; LÞ � :take bonusðp; LÞ;:suspendðp; LÞ � take salaryðp; LÞg
The static rules encapsulate the indirect effects of an action, which are caused by the existence of integrity
constraints. The indirect effects of an action ensure that after the execution of an action the integrity con-
straints are satisfiable in the new situation. Thus the static rules must be derived in such a way that when
an integrity constraint is not satisfied in a situation produced by application of dynamic rules at least one static
rule is executable. After execution of static rules, the corresponding integrity constraints will be satisfied. The
basic idea we propose is to translate each integrity constraint into CNF form
C1 ^ � � � ^ Cn; where Ci � f1i _ � � � _ fmi;
and to ensure that whenever a Ci is false, static rules can be executed and make Ci true. To ensure this there
must be at least one static rule of the form
:
_

fp s.t. p 2 f1i; . . . ;mig and p 6¼ ki
h i

_ FL � fki
where FL is a fluent formula and ki 2 {1i, . . . ,mi}. After the execution fluent fki will be true, thus the Ci will be
true. If the above happens for each Ci of each integrity constraint then the integrity constraint will be satis-
fiable after the execution of the static rules.

One cornerstone of our work is the production of the static rules from integrity constraints, according to
the above ideas. We make use of a binary relation I which is produced from the integrity constraints and
encodes the dependences between fluents (see Section 4 for details). The algorithm for producing static rules
is the following:

1. Transform each integrity constraint into its CNF form. Now each integrity constraint has the form
C1 ^ C2 ^ C3 � � � ^ Cn, where each Ci is a disjunct on fluents.

2. Set R ¼ fFalse � f ; False � :f :for each fluent f g
3. For each i from 1 to n do: assume Ci = f1 _ � � � _ fm
For each j from 1 to m do
For each k from 1 to m, and k 5 j, do
if (fj, fk) 2 I then
R ¼ R [ð:fj causes f k if

V
:flÞ; l 6¼ j; k.

4. For each fluent fk the rules4 in R have the following form:V V

f i causes f k if U; f 0i causes :fk if U0

We change the static rules from G � fk;K � :fk

to G _
^

fi ^ U
� �� �

� fk; K _
^

f 0i ^ U0
� �� �

� :fk

5. At time moment t, for the static rule G(t, t1) � f do
tice that for each fluent there could be more than one causal relationship. This happens in the case that for fluent fk, there is more
ne integrity constraint. At this step we integrate all this causal relationship into one. For example if f1 ^ f 2 causes f3 if f4 and
causes f3 if f7 then the static rule False � f3 is transformed first into f1 ^ f2 ^ f4 � f3 and finally into (f5 ^ f6 ^ f7) _ (f1 ^ f2 ^ f4) � f3.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 403
(a) let G = G1 _ � � � _ Gn
(b) For each j from 1 to n do
• let Gi = f1([..]) ^ � � � ^ fn([..])
0 00
(i) for each fluent fi(L) take the first element [t , t] of the list L.

(ii) if t 0 > t then G is false and terminated.
(iii) else ti = t00 � t.
• let tmin = min(t1, . . . , tn)
• replace Gi with Gi(t, t + tmin)

Notice that the first four steps are static and executed once at the start. The fifth step is executed each time
point at which the static rule must be evaluated. This happens because the formula Gfpðt; L0Þ can be true for
different values of t and L 0.

Consider the example of the public worker. The above alogrithm works as follows:
The transformation of integrity constrtaints into the CNF form yields:
:illegalðp; t1Þ _ suspendedðp; t1Þ
:suspendedðp; t1Þ _ take salaryðp; t1Þ
suspendedðp; t1Þ _ :good employeeðp; t2Þ _ take bonusðp; t3Þ
good employeeðp; t1Þ _ :take bonusðp; t1Þ
suspendedðp; t1Þ _ take salaryðp; t1Þ
This is step 1 of the algorithm. In step 3 we have
R ¼ fillegalðp; t1Þ causes suspendedðp; t1Þ if T ;

suspendedðp; t1Þ causes :take salaryðp; t1Þ if T ;

good employeeðp; t1Þ causes take bonusðp; t1Þ if :suspendedðp; t1Þ;
:suspendedðp; t1Þ causes take bonusðp; t1Þ if good employeeðp; t1Þ;
:good employeeðp; t1Þ causes :take bonusðp; t1Þ if T ;

:suspendedðp; t1Þ causes take salaryðp; t1Þ if Tg
In step 3 we estimate the causal relationships based on the binary relationship I. In step 4 we have
R ¼ fillegalðp; t1Þ � suspendedðp; t1Þ;
suspendedðp; t1Þ � :take salaryðp; t1Þ;
:suspendedðp; t1Þ ^ good employeeðp; t1Þ � take bonusðp; t1Þ;
:good employeeðp; t1Þ � :take bonusðp; t1Þ;
:suspendedðp; t1Þ � take salaryðp; t1Þg
In step 4 we construct for each fluent the fluent formula which makes the fluent true. Notice that perhaps
there are many causal relationships which affect the same fluents. We integrate these causal relationships in
this step. In step 5 we get
R ¼ fillegalðp; LÞ � suspendedðp; LÞ;
suspendedðp; LÞ � :take salaryðp; LÞ;
:suspendedðp; L1Þ ^ good employeeðp; L2Þ � take bonusðp; L1 [LÞ;
:good employeeðp; LÞ � :take bonusðp; LÞ;
:suspendedðp; LÞ � take salaryðp; LÞg
As we observe the production of static rules is based on the binary relation I. Our idea is that when Ci is
false there must be at least one static rule which is executable. For this to happen there must be at least one
pair (fj, fw) 2 I such that Ci ¼ fj _ fw _ C0i.

404 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
In [13,14] we have presented an algorithm for the evaluation of static and dynamic rules for the sequential
execution of actions when the effects of the actions refer only to the future.

When a static rule G(t,L) � f(L) evaluates the element, [t, t 0] is added to list L and is removed from the L 0,
where :f ðL0Þ.5

Consider the above example with of public worker. We have the following dynamic rules:
5 Lis
occurðmisdemeanorðpÞ; tÞ � illegalðp; ½t; t þ 5�Þ
occurðtake pardonðpÞ; tÞ � :illegalðp; ½t;1�Þ
occurðbad gradeðpÞ; tÞ � :good employeeðp; ½t;1�Þ
occurðgood gradeðpÞ; tÞ � good employeeðp; ½t;1�Þ
Assume that the initial situation is
S0 ¼ f:take bonusðp; ½½0;1��Þtake salaryðp; ½½0;1��Þ;
:suspendedðp; ½½0;1��Þ;:good employeeðp; ½½0;1��Þ;:illegalðp; ½½0;1��Þg
Assume that the following actions occur at the following time points, assuming that the time starts at 0 and
time granularity is that of months. Assume the execution of the action
occurðmisdemeanorðpÞ; 2Þ

The new situation is
S01 ¼ f:take bonusðp; ½½0;1��Þ; take salaryðp; ½½0;1��Þ;
:suspendedðp; ½½0;1��Þ;:good employeeðp; ½½0;1��Þ;
illegalðp; ½½2; 7��Þ;:illegalðp; ½½7;1��Þg
The following integrity constraint is not satisfied in S01:
illegalðp; t1Þ � suspendedðp; t1Þ

But the static rule
illegalðp; ½½2; 7��Þ � suspendedðp; ½½2; 7��Þ

is executable. After the execution of the above static rule the new situation is
S001 ¼ f:take bonusðp; ½½0;1��Þ; take salaryðp; ½½0;1��Þ;
suspendedðp; ½½2; 7��Þ;:suspendedðp; ½½7;1��Þ;:good employeeðp; ½½0;1��Þ;
illegalðp; ½½2; 7��Þ;:illegalðp; ½½7;1��Þg
As we observe in that situation the following integrity constraint is not satisfied.
suspendedðp; t1Þ � :take salaryðp; t1Þ

But the static rule
suspendedðp; ½½2; 7��Þ � :take salaryðp; ½½2; 7��Þ

is executable in S001. After the execution the final situation is
S1 ¼ f:take bonusðp; ½½0;1��Þ; :take salaryðp; ½½2; 7��Þ; take salaryðp; ½½7;1��Þ;
suspendedðp; ½½2; 7��Þ;:suspendedðp; ½½7;1��Þ;:good employeeðp; ½½0;1��Þ;
illegalðp; ½½2; 7��Þ;:illegalðp; ½½7;1��Þg
We adopt the algorithm for the production of static rules and we address the ramification problem in the case
that the effect of the actions could change beliefs about the past.
t L0 is the list, which contains the time intervals, in which fluent :f is true.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 405
By the production of the static rules we have that

Theorem 3.1. When a static rule is executable at least one integrity constraint is unsatisfiable.

Proof. Assume that a static rule
6 We
Gf ð� � �Þ � f
is executable in a situation S. Then the fluent formula Gf must be true. We have that
Gf � G1
f _ � � �Gw

f

where

Gi
f � :

^
fjðtj; j ¼ 1; . . . ;mÞ

� �
Each Gi
f is derived from the integrity constraint C1 ^ � � � ^ Cn, such that there is a Ci � f _ f1 _ � � � _ fm. Thus

when the Gi
f is true it must have all fluents fj, j = 1, . . . ,m to be false. In order to be executable the above static

rule must be f to be false. In that case Ci � f _ f1 _ � � � _ fm is false, thus the integrity constraint C1 ^ � � � ^ Cn is
unsatisfiable. h

In order to have a consistent situation, the set of integrity constraints must be satisfied for some conditions.
We study the case that the set of integrity constraints is satisfiable. For example, if there are two integrity con-
straints of the form
f1 � f2

f2 � f3

f3 � :f1

:f1 � :f2

:f2 � :f3

:f3 � f1
then there is no situation in which the above two constraints are satisfiable because the set
fð:f1; f2Þ; ð:f2; f3Þ; ð:f3;:f1Þ; ðf1;:f2Þ; ðf2;:f3Þ; ðf3; f1Þg

is not satisfiable.6 By the above six constraints we formulate six static rules which will be evaluated one after
the other for infinitely. This happens because there is no consistent situation and thus always at least one static
rule will be executable.

Theorem 3.2. Consider a set of static rules G. Then if for a fluent f1 there is a sequence of
Gf2
ð� � �Þ � f2ð� � �Þ where Gf2

� f1 _ G0f2

Gf3
ð� � �Þ � f3ð� � �Þ where Gf3

� f2 _ G0f3

. . .

Gfnð� � �Þ � fnð� � �Þ where Gfn � fn�1 _ G0fn

G:f1
ð� � �Þ � :f1ð� � �Þ where G:f1

� fn _ G0:f1

Gfnþ1
ð� � �Þ � fnþ1ð� � �Þ where Gfnþ1

� :f1 _ G0fnþ1

. . .

Gfnþmð� � �Þ � fnþmð� � �Þ where Gfnþm � fnþm�1 _ G0fnþm

Gf1
ð� � �Þ � f1ð� � �Þ where Gf1

� fnþm _ G0f1
then the set of rules is unsatisfiable.
have that :f1 _ f2 � f1 � f2, :f2 _ f3 � f2 � f3; . . .

406 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
Proof. Assume that f1 is true. If we iteratively apply the modus ponen we have
f1 _ G0f2
� f2

f1

f2

f2 _ G0f3
� f3

f3

f3 _ G0f4
� f4

f4

. . .
fn

fn _ G0:f1
� :f1

:f1
We conclude that :f1 holds. Assume that :f1 is true. If we apply iteratively the modus ponen we have
:f1 _ G0fnþ1
� fnþ1

:f1

fn+1

fnþ1 _ G0fnþ2
� fnþ2

fn+2

fnþ2 _ G0fnþ3
� fnþ3

fn+3

. . .
fn+m

fnþm _ G0f1
� f1

f1
We conclude that f1 holds. Thus we always have that f1 ^ :f1. This is not satisfied. h

For the rest of the paper we assume that the set of the integrity constraints is satisfiable (this means that
there is no sequence as described in Theorem 3.2). This will be ensuring no static rule is executable in the initial
situation at time point 0 (by that Theorem 3.1).

We can discover if a set of the integrity constraints is satisfiable if we transform each of them in to a CNF
form. Then if we have n integrity constraints we have
C11 ^ � � � ^ C1n

. . .

C1n ^ � � �Cnn
Each Cik is a disjoint. Then if the set C = {C11, . . . ,C1n, . . . ,C1n, . . . ,Cnn} is satisfiable, then the set of integ-
rity constraints is satisfiable. We can use the algorithm of the tree reconstruction in order to see if the set C is
satisfiable.

Also in order to be consistent in the set of the static rule R, for each pair ðf ;:f Þ it holds that
Gf ^ Bf � FALSE, when Gf � f ;Bf � :f . In the other case we have the infinite execution of the rule
Gf � f ;Bf � :f (one after the other) if Gf ^ Bf = TRUE. This is the second precondition which we assume
for the rest of this paper.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 407
Theorem 3.3. If in a set of static rules R there is a pair ðf ;:f Þ such that Gf ^ Bf 6� FALSE, when

Gf � f ;Bf � :f then there is a case that the static rules Gf � f ;Bf � :f may be executed infinitely.
3.2. Other previous works

The other most prevalent previous works are those by Reiter [18], Reiter and Pinto [16,17], Kakas [2,3] and
the work on the event calculus. Reiter has suggested an extension of the situation calculus in order to encap-
sulate time and axioms which ensure that in each legal situation all natural actions have been executed. A nat-
ural action is an action which executes in a predetermined time moment except if some other action has
changed the time of execution. Reiter has extended the fundamental axioms of the situation calculus in order
to determine which fluent is true at each time moment. The problem addressed is the frame7 rather than the
ramification problem. However the work of Reiter sets the basis for encapsulating time in the situation cal-
culus. In this paper, we propose a further extension of the situation calculus based on Reiter�s proposal. Kakas
[2,3] proposed the language E which contains a set / of fluents, a set of actions, and a partially ordered set of
time points. E employs the following axiom schemas for the description of the world (assume L and F are flu-
ents, T is a time point, A is an action and C is a set of fluents).
7 Th
L holds at T

A happens at T

A initiates F when C

A terminates F when C

L whenever C

A needs C
As we may observe, the third and fourth axioms are dynamic because they evaluate when an action exe-
cutes, while the last two are static because they evaluate at each time moment. In E, one cannot declare effects
that persist over a time span as in the aforementioned example where, if someone did a misdemeanor then s/he
is illegal for the subsequent 5 months. In order to achieve this, it is necessary for an action to occur after 5
months. This means that the users must explicitly determine all the indirect and direct effects. Also this
assumption creates many new problems. For example, assume the following execution:
occurðmisdemeanorðpÞ; 3Þ
occurðtake pardonðpÞ; 5Þ
occurðmisdemeanorðpÞ; 7Þ.
The first action has no persistence effects that the fluent illegal holds for 5 months. Thus we must determine
that an action end-illegal will be executed at time point 8. At time point 5 the action take_pardon(p) takes place
and cancels the effect of the first action. Thus we must cancel the execution of action end-illegal because if it is
executed at will cancel the effect of the third action and this is wrong. The effect of third action must be can-
celled at time point 12. An obvious solution could be to determine preconditions for these ‘‘cancelling’’
actions. In the above example the preconditions could be the fluent illegal to hold. This is wrong because
in the above example the fluent illegal is true at time point 8 but the action end-illegal must not be executed.
Thus the determination of the preconditions is very complex. Also the number of actions are increased very
much because we must define one action of each no persistent effect of each action.

Also, E cannot represent delayed effects, as e.g., if someone does a misdemaenour then s/he becomes illegal
2 months later and remains illegal for the next 5 months. We consider these assumptions rather strong and
examine the problem in a strictly more general setting. The language E works satisfactorily only when the
world which is described is based on the persistence of fluents (like the circuit).
e problem of determining which predicates and functions are not affected when an action is executed is the frame problem [9].

408 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
The event calculus has been proposed in [10,4]. In the event calculus the time is discrete. We define the fol-
lowing predicates and relations:
Initiatesða; f ; tÞ
Terminatesða; f ; tÞ
Initiallypðf Þ
InitiallyN ðf Þ
t1 < t2

Happensða; tÞ
Happensðt1; a; t2Þ
HoldsAtðf ; tÞ
Clippedðt1; f ; t2Þ
declippedðt1; f ; t2Þ
Releasesða; f ; tÞ.
The first predicate means that the fluent f starts to hold after action a at time t, the second means that the
fluent f ceases to hold after action a at time t, the third means that the fluent f holds from time 0, the fourth
means that the fluent f does not hold from time 0, the fifth relation means that time point t1 is before time
point t2, the sixth predicate means that the action a occurs at time point t, the seventh means that the action
a starts at time point t1 and ends at time point t2, the eighth means that fluent f holds at time point t, the nineth
means that fluent f ceases to hold between times t1 and t2, the tenth means that fluent f starts to hold between
times t1 and t2. The last predicate means that fluent f is not subject to inertia after action a at time point t.

The event calculus is very similar to the language E. The most important difference is that the event calculus
could encapsulate effects which do not start or terminate in the discrete time point (the predicates Clip-
ped(t1, f, t2), declipped(t1, f, t2), Happens(t1,a, t2)).

4. Fluent dependencies

This section describes algorithms for discovering dependencies between fluents. As we have already
explained the aim of the binary relation I is to encapsulate the dependencies between fluents and to ensure
that when an integrity constraint is not satisfied, then there is at least one static rule which is executable
and after the execution the integrity constraint will be satisfied.

Assume that we have two kinds of integrity constraints
ðaÞ Gf � Kf

ðbÞ Gf � Kf
where Gf and Kf are fluent propositions. The difference between the two kinds is that, for the second kind,
when :Gf holds then :Kf also holds, whereas this is not necessarily the case for the first. For the first kind
of constraints, for each f 2 Gf and f 0 2 Kf we add the pair (f, f 0) in I. Notice that (f 0; f Þ 62 I (because Kf 6�Gf Þ.
For the second kind of constraints we make the following hypothesis: The change of the truth value of a fluent
belonging to Gf is expected to affect the truth values of some fluents belonging to Kf, while it is not expected to
affect the truth values of other fluents which belong to Gf. We make the same hypothesis for the fluents of Kf.

Algorithm 1 for constructing I

1. For the first kind of constraints, for each f 2 Gf and f 0 2 Kf we add the pair (f, f 0) in I.
2. For the second kind of constraints, for each pair of fluents f, f 0, such that f 2 Gf and f 0 2 Kf we add (f, f 0) and

(f 0, f) to I.

Consider the circuit in Fig. 3. The integrity constraints specifying the behavior of this system are expressed
as the following formulae:

up(s1) up(s2)

up(s3)

lightrelay

Fig. 3. Theilsher�s circuit.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 409
ðaÞ light � upðs1Þ ^ upðs2Þ
ðbÞ relay � :upðs1Þ ^ upðs3Þ
ðcÞ relay � :upðs2Þ.
By applying this procedure the set I is constructed as follows: for constraint (a) we conclude that
(up(s1), light), (up(s2), light), (light, (up(s1))), (light, (up(s2))) must be added in I. From rule (b) we obtain
(up(s1), relay), (up(s3), relay), (relay, (up(s1))), (relay, (up(s3))) to be in I and from rule (c) we obtain (relay,
up(s2)) 2 I.

By the second step of Algorithm 1 we have that (up(s1), light) 2 I, while ðupðs1Þ; upðs2ÞÞ 62 I . Assume that
the circuit is in the situation that is depicted in Fig. 3. The action toggle_switch(s1) has an indirect effect to
light the lamp and not to toggle the switch s2. We observe that it is not reasonable to include the fluent pairs
(light, (up(s1))), (light, (up(s2))), (relay, (up(s1))), (relay, (up(s3))) in I. The truth values of fluents light and relay

cannot change as the direct effect of an action, so they cannot affect the truth values of other fluents.

Algorithm 2 for constructing I

1. For each f 2 Gf, f 0 2 Kf, where Gf � Kf is a specified constraint, add the pair (f, f 0) 2 I.
2. For each f 2 Gf, f 0 2 Kf, where Gf � Kf is a specified constraint do:

If f can change its truth value as the direct effect of an action, then add (f, f 0) in I. If f 0 can change its truth
value as a direct effect of an action then add (f 0, f) in I.

In our example, the above change is right if and only if each of the fluents light and relay appear as a single
rule of the form Gf � Kf. For example, consider the circuit in Fig. 4. The integrity constraints specifying the
behavior of this system are expressed as the following formulae:
ðaÞ light � upðs1Þ ^ upðs2Þ
ðbÞ light � upðs4Þ ^ upðs5Þ
ðcÞ relay � :upðs1Þ ^ upðs3Þ
ðdÞ relay � :upðs2Þ.
Applying the procedure described above yields
ðupðs1Þ; lightÞ; ðupðs2Þ; lightÞ; ðupðs4Þ; lightÞ; ðupðs5Þ; lightÞ
ðupðs1Þ; relayÞ; ðupðs3Þ; relayÞ; ðrelay; upðs2ÞÞ 2 I
Assume that the circuit is in the situation depicted in Fig. 4. Then, after the execution of action toggle_
switch(s4), because (up(s4), light) 2 I, the fluent light changes from :light to light. Because ðlight; upðs1ÞÞ;
ðlight; upðs2ÞÞ 62 I , the fluents up(s1), up(s2) do not change. This means that the circuit will be in situation

up(s1) up(s2)

lightrelay

up(s3)

up(s4)

up(s5)

Fig. 4. A more complex circuit.

410 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
:upðs1Þ; upðs2Þ; upðs4Þ; upðs5Þ;:upðs3Þ;:relay; light, which violates the rule (a). Assume now that the integrity
constraints specifying the behavior of this system are expressed as the following formulae:
ðaÞ light � ðupðs1Þ ^ upðs2ÞÞ _ ðupðs4Þ ^ upðs5ÞÞ
ðbÞ relay � :upðs1Þ ^ upðs3Þ
ðcÞ relay � :upðs2Þ.
In the above specification of constraints, the fluent light is only in one constraint of type Gf � Kf and the
modified algorithm behaves correctly. As we observe the circuit of the Fig. 4, consists two smaller circuits. The
first consists of the switches s1, s2 and the lamp, while the second switches s4, s5 and the lamp. The reason is that
the lamp light is on when one of the two circuits is closed. This is ensured by the second set of integrity con-
straints. The first set of integrity constraints ensure that when one circuit is closed then the second must also be
closed. This is not reasonable.

Theorem 4.1. Let A � B be a constraint and C1 ^ � � � ^ Cn its CNF form. Both algorithms produce I in such a

way that for each Ci there is at least one pair (f1, f2) 2 I and Ci ¼ f1 _ f2 _ C0i.

Proof. The A � B is equivalent with :A _ B. Assume that C � :A.
Assume that the DNF form of C and B are
c1 _ � � � _ cn

b1 _ � � � _ bm
respectively.
Assume that
c1 ¼ f1c1
^ � � � ^ fnc1

. . .

cn ¼ f1cn
^ � � � ^ fncn

b1 ¼ f1b1
^ � � � ^ fnb1

. . .

bm ¼ f1bm
^ � � � ^ fnbm

.

The integrity constraint A � B is equivalent to
c1 _ � � � _ cn _ b1 _ � � � _ bm.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 411
This is equivalent to the following:
C1 ^ � � � ^ Cw; where

ð1Þ w ¼ nc1
� � � � � ncn

� nb1
� � � � � nbm

ð2Þ Ci ¼ fi1 _ � � � _ fin _ finþ1
_ � � � _ finþm ; where

fi1 2 c1;

. . .

fin 2 cn

finþ1
2 b1

. . .

finþm 2 bm.
For the above two algorithms (from the step 1) we have the pairs
fðfi1 ; finþ1
Þ; . . . ; ðfi1 ; finþmÞg � I

. . .

fðfin ; finþ1
Þ; . . . ; ðfin ; finþmÞg � I .
Thus for each Ci there is at least one pair (f, f 0) 2 I, where f, f 0 are disjunct of Ci. h

Theorem 4.2. Let A � B be a constraint and C1 ^ � � � ^ Cn its CNF form. Algorithm 1 generates I in such a

way that for each Ci there is at least one pair (f1, f2) 2 I and Ci ¼ f1 _ f2 _ C0i. For the first algorithm for each

constraint A � B if C1 ^ � � � ^ Cn is the CNF form then for each Ci there is at least one pair (f1, f2) 2 I.

Proof. The integrity constraint A � B is equivalent with (A � B) ^ (B � A). Assume that
C1 ^ � � � ^ Cw

C01 ^ � � � ^ C0w
are the CNF forms of A � B and B � A, respectively. Then from the previous theorem we have that for each
Ci there is at least one pair (f, f 0) 2 I and f, f 0 2 Ci and for each C0i there is at least (f1, f2) 2 I and f1; f2 2 C0i.

The integrity constraint A � B is equivalent to
C1 ^ � � � ^ Cw ^ C01 ^ � � � ^ C0w.
In order to transform the CNF form from the above proposition we must examine if there are some pair
(Ci,Cj) at which Ci ‘‘subsume’’ Cj, in which case we must delete the Cj. Thus the CNF form A � B contains
a subset of C1, . . . ,Cw. Thus we have proven the theorem. h

Theorem 4.2 does not hold for Algorithm 1 because it eliminates some pairs which Algorithm 1 produces.
The problem in these Ci which all the fluents contain and belong to one side of the rule cannot change as direct
effects of an action and some of the fluents of the Ci belong to another integrity constraint too. For example
assume the following two integrity constraints:
f � B

f � B0
Fluent f cannot change as a direct effect of an action. Then for all fluents fi which are in B or in B 0 and could
change their truth value as a direct effect of an action, there is a pair (fi, f) 2 I, while (f ; fiÞ 62 I . If an action
makes B true, then f must become true, too. After that B 0 must be true. But fluent f cannot affect the truth
value of no fluent in B 0, since (f ; fiÞ 62 I , so the IC f � B 0 is violated.

412 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
An example for such a situation is the following:
ðaÞ light � upðs1Þ ^ upðs2Þ
ðbÞ light � upðs4Þ ^ upðs5Þ
ðcÞ relay � :upðs1Þ ^ upðs3Þ
ðdÞ relay � :upðs2Þ
We identified above the following situation which is problematic for Algorithm 2.
A � B and C � B are ICs and A 6¼ C
where A, B, C are fluent formulas and B contains fluents which may change their truth value only as an indi-
rect effect of an action. The following results show a weaker condition under which Algorithm 1 is guaranteed
to lead to an I which presents consistency.

Theorem 4.3. For each integrity constraint A � B and if for each fluent A1 and B1 which belong to A and B,

respectively and could change their truth value only as indirect effects then Algorithm 2 does not produce an

inconsistency when there are no C and D, such that C � B1 and D � A1, C 5 A and D 5 B.

Proof. Assume that integrity constraint A � B and A1 and B1 are the fluent formulas which contain the fluents
which belong to A and B, respectively and could change its truth value only as indirect effects. Assume that
there is no integrity constraint C � B1 or D � A1 such that C 5 A and D 5 B.

Assume that the initial situation satisfied the integrity constraint. Then assume that an update in the database
occurs. There are two cases. First this update does not influence any of the fluents which belong to A and B. Then
the integrity constraint is satisfiable in the new situation. The second case is this update changes the truth value
of some fluents which belong to A or B. This change refers to fluents which belong in AnA1 or BnB1 because the
fluents which belong to A1 and B1 could change their true value only as indirect effects of an action and no other
integrity constraints could affect them (because there is no C � B1 or D � A1 such that C 5 A and D 5 B).

Thus the fluents which change their truth value could affect the other part of the integrity constraint. h

In cases where the condition of Theorem 4.3 is not satisfied, we use Algorithm 1 for generating I. Otherwise
we use Algorithm 2.
5. Changing the belief about the past

5.1. Motivation

Recall the example from Section 1. We now extend the example in order to present the problem in case that
an action could change the belief about the past. We change the function fluents position, salary as follows:
position(p, l, t, t1), salary(p, l, t, t1) where the first means that the public worker p at time point t is in position
l for t1 time points, while the last means that the public worker p at time point t takes salary l for t1time points.
Assume that the action take_pardon could change the belief about the past.
take pardonðp; t; t1Þ � :illegalðp; ½t1;1�Þ

means that the action take_pardon occurs at time point t and its effects start to hold for time point t1 (perhaps
t1 < t). We present the problem with some examples.

Example 1. Consider the following execution:
occurðmisdemeanorðpÞ; 20; 20Þ; occurðtake pardonðpÞ; 24; 21Þ

The time starts at 0 and has the granularity of months. Consider the initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ;:illegalðp; ½0;1�Þ;
positionðp; 1; 0; 38Þ; salaryðp; 3; 0; 2Þg

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 413
At time point 20 the action misdemeanor executes and the new situation is
8 Th
thus th
S1 ¼ f:take bonusðp; ½0;1�Þ;:take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; good employeeðp; ½0;1�Þ; illegalðp; ½20; 25�Þ;
:illegalðp; ½½0; 20�; ½25;1��Þ; positionðp; 1; 20; 58Þ; salaryðp; 3; 20; 22Þg
Time point 22 is the time when a public worker could take an increase and promotion. This cannot happen
because s/he is illegal. At time point 24 the situation is
S01 ¼ f:take bonusðp; ½0;1�Þ;:take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; good employeeðp; ½0;1�Þ; illegalðp; ½20; 25�Þ;
:illegalðp; ½½0; 20�; ½25;1��Þ; positionðp; 1; 24; 62Þ; salaryðp; 3; 24; 26Þg
At this time point the public worker takes pardon which means that for time 21 the public worker ceases to
be assumed illegal. This has as an indirect effect that promotion and increase should have been granted at time
point 22. We must change the value of fluents for the past time points. The fluent illegal changes its value at
time point 21. Now the following propositions hold at time point 22:
positionðp; 1; 22; 60Þ ^ :illegalðp; ½21;1�Þ
salaryðp; 3; 22; 24Þ ^ :illegalðp; ½21;1�Þ.
So the public worker must take promotion and increase at time point 22. Thus the next increase in salary
must happen 24 time points after time point 22 (resp. 60 months for promotion).

Example 2. Execution of an action may have as indirect effects to disqualify8 an action which has already
been executed.

Assume that the action misdemeanor could refer to the past.
occurðmisdemeanorðpÞ; 26; 20Þ

The time starts at 0 and has the granularity of months. Consider the initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½0;1�Þ;
positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 24 the actions grant_promotion and grant_increase execute. Now the new situation is
S1 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ;:illegalðp; ½0;1�Þ;
positionðp; 2; 0; 0Þ; salaryðp; 4; 0; 0Þg
At time point 26 the action misdemeanor executes and has as an effect that the public worker be illegal at
time point 20. This means that the situation must change at time point 20 in the following:
S01 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; good employeeðp; ½0;1�Þ; illegalðp; ½20; 25�Þ;
:illegalðp; ½½0; 20�; ½25;1��Þ; positionðp; 1; 20; 56Þ; salaryðp; 3; 20; 20Þg
is means that if we change the past, perhaps the preconditions of some action which has been executed in the past, become false and
is action must not have been executed.

414 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
Now the action grant_promotion and grant_increase cannot execute at time point 24. They will be executed
at time 25 when the suspension ceases. Now the next promotion and increase must happen at 60 and 24 time
points after time point 25.

Example 3. Another problem is the case that an action which could change the belief about the past leads to
an infinite loop. Assume the following execution:
occurðmisdemeanorðpÞ; 26; 20Þ; occurðtake pardonðpÞ; 27; 22Þ

The time starts at 0 and has the granularity of months. Consider the initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½0;1�Þ;
positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 24 the actions grant_promotion and grant_increase execute. Now the new situation is
S01 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendðp; ½0;1�Þ;:good employeeðp; ½0;1�Þ;:illegalðp; ½0;1�Þ;
positionðp; 2; 0; 0Þ; salaryðp; 4; 0; 0Þg
At time point 26 occurs the action misdemeanor which tells us that the public worker did something illegal at
time point 20. This means that the situation must change at time point 20 to the following:
S001 ¼ f:take bonusðp; ½0;1�Þ;:take salaryðp; ½20; 25�Þ; take salaryðp; ½½0; 20�; ½25;1��Þ;
suspendedðp; ½20; 25�Þ;:suspendedðp; ½½0; 20�; ½25;1��Þ;
:good employeeðp; ½0;1�Þ; illegalðp; ½20; 25�Þ;:illegalðp; ½½0; 20�; ½25;1��Þ;
positionðp; 1; 20; 56Þ; salaryðp; 3; 20; 20Þg
Now the actions grant_promotion and grant_increase cannot execute at time point 24. They will be executed
at time 25. Now the new promotion and increase must happen 60 and 24 time points after time point 25.

But at time point 27 the action take_pardon executes which tells us that the public worker ceases to be illegal
at time point 22. Now the new situation is
S2 ¼ f:take bonusðp; ½0;1�Þ;:take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; good employeeðp; ½0;1�Þ; illegalðp; ½20; 22�Þ;
:illegalðp; ½½0; 20�; ½22;1��Þ; positionðp; 1; 20; 56Þ; salaryðp; 3; 20; 20Þg
Thus at time point 24 we must execute the actions grant_promotion and take_salary. This means that we
must repeat the execution for time point 22. But at time 26 we will again execute again the action misdemeanor.
As we observe the second execution of the action misdemeanor does not change the truth value of any fluent at
time point 20 (because the fluent illegal is true at time point 20 as we observe in situation S001. Situation S001
ceases to hold at time point 22). If we evaluate the dynamic rule occur(misdemeanor(p),26,20) � ille-

gal(p, [20,25]), the actions grant_promotion and grant_increase cannot be executed at time point 24. At time
point 27 after the execution of the action take_pardon (occurðtake pardonðpÞ; 27; 22Þ � :illegalðp; ½22; 25�Þ)
the actions grant_promotion and grant_increase will be executed at time point 24, and so on. Thus we have
an infinite loop.

We must repeat the execution from one time point in the past if and only if an action changes the truth
value of some fluents (e.g., from illegal(p, [20, 22]) to :illegalðp; ½20;1�Þ as happened in the execution of
the action take_pardon) and not in the case that only the time intervals at which some fluents are true (e.g.,
from illegal(p, [20,22]) to illegal(p, [20, 25]) as happened in the second execution of the action misdemeanor).
The above problem arises because the execution of the actions occurðmisdemeanorðpÞ; t3; t03Þ and occurðtake
pardonðpÞ; t4; t04Þ satisfied the condition t03 < t04 < t3 < t4. This means that the execution of one action

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 415
‘‘intersect’’ the execution the other action, as shown in Fig. 5. The solution to this problem is to reject the
former action whose execution of time is smaller than that of the second action which is executed more
recently. In other words, we break the infinite loop by preferring the most recent information.

Example 4. Consider the following execution:
occurðmisdemeanorðpÞ; 26; 23Þ; occurðtake pardonðpÞ; 27; 22Þ

Assume the same initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ;:illegalðp; ½0;1�Þ;
positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
We now have that the actions grant_increase and grant_promotion execute at time point 24. Now the new
situation is S01 (the same as in the previous example). After the execution of the action misdemeanor we repeat
the execution for time point 23. Notice that at time point 23 situation S0 holds (not the S1 which starts to hold
from 24); thus the effects of the misdemeanor change situation S0. The new situation at time point 23 is
S002 ¼ f:take bonusðp; ½0;1�Þ;:take salaryðp; ½23; 28�Þ;
take salaryðp; ½½0; 23�; ½28;1��Þ; suspendedðp; ½23; 28�Þ;
:suspendedðp; ½½0; 23�; ½28;1��Þ; :good employeeðp; ½0;1�Þ; illegalðp; ½23; 28�Þ;
:illegalðp; ½½0; 23�; ½28;1��Þ; positionðp; 1; 23; 59Þ; salaryðp; 3; 23; 23Þg.
At time point 24 we do not execute the two actions. After the execution of the action take_pardon at time
point 27 we repeat the execution for time point 22 (notice that the effect of the action take_pardon changes
situation S0 because situation S002 starts to hold from time point 23). Now the situation at time point 22 is
S2 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ;
:illegalðp; ½0;1�Þ; positionðp; 1; 22; 58Þ; salaryðp; 3; 22; 22Þg
and we execute the two actions at time point 24. At time 26 the action misdemeanor is executed again and
we again have situation S002 at time 23. Now the two actions do not execute. At time point 27 the action
take_pardon executes again and thus we have an infinite loop.

The reasonable way of breaking this loop is to not execute the action misdemeanor for the second time
because the action take_pardon which has the opposite effect is more recent. As we observe the problem occurs
because the actions occurðmisdemeanorðpÞ; t3; t03Þ and occurðtake pardonðpÞ; t4; t04Þ have opposite effects and
t04 < t03 < t3 < t4. The last condition means that the action take_pardon ‘‘contains’’ the action misdemeanor, as
shown in Fig. 5B. Notice that again we break the infinite loop by preferring the action which executes more
recently.
occur(take_pardon(p),27,22)

occur(misdemeanor(p),26,20)
occur(misdemeanor(p),26,23)

occur(take_pardon(p),27,22)
20 22 26 27 22 23 26 27

Time Axis

(A) (B)

Fig. 5. The scenarios of execution.

416 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
In this paper we propose an algorithm for avoiding the infinite loop by rejecting the execution of some
actions. As we observed from the above examples the correspondences of Fig. 2 cannot represent the
correspondence between situations, actions and time in the case that the effects of the actions refer to the past.
This happens because after the execution of an action which changes the past (at time t) we repeat the
execution from time point (t). For example consider in the execution of Example 3
occurðmisdemeanorðpÞ; 26; 20Þ; occurðtake pardonðpÞ; 27; 22Þ

As we observe the following holds before the execution of the action misdemeanor:
startðS0Þ ¼ 0 endðS0Þ ¼ 24

startðS01Þ ¼ 24 endðS01Þ ¼ 26
After the execution of the action misdemeanor
startðS0Þ ¼ 0 endðS0Þ ¼ 20

startðS001Þ ¼ 20 endðS001Þ ¼ 25

startðS001Þ ¼ 25 endðS2Þ ¼ 27
At time point 21 we have two different situations S0 and S001. This also happens at time points 22–26. The cor-
respondences of Fig. 2 ensure that at a time point there is only one situation because the situation axis is linear.

In Example 3 before the execution of the actions misdemeanor the action grant_increase and grant_pro-

motion execute at time point 24, while at time 25 no action takes place. After the execution of the action
misdemeanor the action grant_increase and grant_promotionare executed at time point 25, while at time 24 no
action takes place. The correspondence of Fig. 2 cannot represent that because it can represent only one
history of execution while in Example 3 we have two. The problem is the linear action axis.

We propose to use branching axes for situations and actions, while the time axis remains linear (see Fig. 6).
When an action changes the past we start two new linear axes, one for the situations and one for the actions.

At each time point we believe that one linear line of the situation axis is the real evolution of the world. We
call this linear line the actual line.

When an action changes the past there are three main assumptions that we could adopt:

1. An action may change all the fluents in the past.
2. An action may change only some fluents in the past.
3. The past may change but the effects of these changes start to hold from the current moment.
SITUATION AXIS

ACTION AXIS

TIME AXIS

Fig. 6. The correspondence between time–actions–situations.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 417
In the rest of the paper we study the implications of these three assumptions. First we must extend the
situation calculus to seem our proposes.
5.2. Further extensions to the situation calculus

In this section we extend the situation calculus in order to solve the ramification problem in case that an
action could change the belief about the past.

• We define the as actual line, a sequence of situations which is believed to be the evolution of the world up to
the current time point.

• We define the fluent actual(S, t) which shows that situation S is on the actual line. The fluent actual is
defined as follows:
– actual(S0, t0) holds always. S0 is the initial situation and t0 is the initial time moment.
– If actual(S, t) holds and at time point t the situation changes without an action taking place9 then, if the

new situation is S 0, then actual(S 0, t) is true.
– When occur(a, t, t1) is true and t1 > = t then, if actual(S, t1) holds and S 0 = do(S,a), then actual(S 0, t1) is

true.
– When occur(a, t, t1) is true and t1 < t then
* for each situation S s.t. end(S) = t 0 < t1, if before the execution of action a the predicate actual(S, t00) is
true for t00 2 [start(S), end(S)] then after the execution actual(S, t00) still holds.

* for each situation S s.t. startðSÞ ¼ t01 < t1, if endðSÞ ¼ t02 >¼ t1 and before the execution of action a the
predicate actual(S, t00) is true for t00 2 [start(S),end(S)] then after the execution the following holds:
startðSÞ ¼ t01 and end(S) = t1 � 1 and actual(S, t000) for all t000 2 [start(S), t1 � 1].

* for each situation S s.t. startðSÞ ¼ t01 > t1 and before the execution of action a the predicate actual(S, t00)
is true for t00 2 [start(S), end(S)] then after the execution the predicate actual(S, t000) is false for each time
point t00. In that case for each time point t00 > t1 the predicate actual must be estimated again.10

• We categorize the fluents into two sets the FP and FS. The first set contains the fluent which cannot change

their true value in the past, and the second contains the fluents which could change their true value in the past.

• We define the predicate ACCEPTANCE(S, t) which shows if situation S in time point t < now is acceptance.
If S 0 is the situation for which actual(S 0, t) is true before the execution of an action which changes the past
then S is acceptable if its different from S 0 does not contain change in the fluents which belong in the FP.
The predicate ACCEPTANCE defined as follows:
9 Bec
10 Wi
11 Th
– If an action occur(a, t2, t1) has been executed at time point t2 and change the past at time point t1 then
for each time point t s.t. t1 < t < = now ACCEPTANCE(S, t) is true if and only if actual(S 0, t) is true
before the execution of action a and S is consistent and T = FluentHold(S, t)nFluentHold(S 0, t) and
T \ FP = ;.11
Now we informally explain the predicates ACCEPTANCE and actual. Consider Fig. 7 and assume that the
actual line is the top line of the situation axis. Assume that the current time point is 10 and an action a1 which
changes the belief about the past at time point 5 takes place. As we observe we start to construct a new actual
line which is the bottom line of the situation axis. In order for the execution of action a1 to be acceptable the
fluents in FP must not change their truth values. This mean that at time points 5 and 6 situation S2 (in the new
actual line) and situation S1 (in the previous actual line) must contain the same truth values for all fluents
which belong in the FP. Also at time points 7 and 8 situation S2 (in the new actual line) and situation S3

(in the previous actual line) must contain the same truth values for all fluents which belong in the FP. At time
point 9 situation S4 (in the new actual line) and the situation S3 (in the previous actual line) must contain the
ause some fluent ceases to hold.
th the execution of the algorithm which we propose in the following sections.
is means that there is no change in the fluents of set FP.

S3

S2 S4

Situation Axis

Time Axis987654

S0 S00

0

S1

Fig. 8. The branching axes.

S1

S2

S3

Situation Axis

Time Axis

S4

5 6 7 98

Fig. 7. The effects of the past.

418 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
same truth values for all fluents which belong in the FP. In any opposite case the action must be rejected and
the actual line remains the top line. The predicate Acceptance(S2,6) is true if and only if the following holds:
12 Th
½FluentHoldðS1Þ n FluentHoldðS2Þ� \ F p � ;

Consider Fig. 8. Assume that the current time point is 10 and the actual line is the top line (contains sit-

uations S0, S00, S1, S3). As we observe the following hold:
startðS0Þ ¼ 0 endðS0Þ ¼ 4

startðS00Þ ¼ 4 endðS00Þ ¼ 6

startðS1Þ ¼ 6 endðS3Þ ¼ 7

startðS3Þ ¼ 7 endðS3Þ ¼ 10
Assume the execution occur(a1,10,5). As we observe action a1 changes the belief about the past (at time

point 5). Thus we must construct the new actual line. The construction of the new actual line concludes the
three steps (as seen in the formal definition).

Step 1. For situation S0 the following holds:
startðS0Þ ¼ 0 < endðS0Þ ¼ 4 < 5
This means that situation S0 is in the new actual line.12

Step 2. For situation S00 the following holds:
startðS00Þ ¼ 4 < 5 < endðS00Þ ¼ 6
e changes happen after the end of situation S0. Thus the past does not change in the time interval in which situation S0 holds.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 419
This means that in the time interval that situation S00 holds happens the change of the past. The end of sit-
uation S00 change end(S00) = 5. Situation S00 is in the new actual line in the time interval [4,5]. At time point 5
it must be producing a new situation such that it contains the effects of action a1.

Step 3.For situations S1 and S3 the following hold:
startðS1Þ ¼ 6 > 5

startðS3Þ ¼ 7 > 5
The new actual line does not contain situations S1, S3 because their start is after the change of the past and
thus we must formulate a new situation which contains the effects of action a1. These new situations are S2, S4

such that start(S2) = 5.

5.3. Fluent dependencies

This section describes an algorithm that discovers dependencies between fluents in the case that an action
changes the belief about the past. We must distinguish between the future and the past because some fluents
cannot change the truth value in the past. More specifically it is possible a fluent can affect a fluent in the
future but it cannot affect in the past. In the case of that change in the future the algorithm is the same as
we present in Section 4.

In the past only the fluents belonging to Fs can change their truth value. In order to achieve that we change
the algorithm as follows:

1. For each f 2 Gf, f 0 2 Kf, where Gf � Kf is a specified constraint then
(a) if fluent f 0 62 F p then add the pair (f, f 0) 2 I.
2. For each f 2 Gf, f 0 2 Kf, where Gf � Kf is a specified constraint do
(a) If f can change its truth value as the direct effect of an action and f 0 62 F p, then add (f, f 0) in I.
(b) If f 0 can change its truth value as a direct effect of an action and f 62 F p then add (f 0, f) in I.
5.4. Production of static rules

As we have already seen the binary relation I is defined twice, first is the case that the effects refer to the
future, and second is the case that the effects refer to the past. The set of the static rules will be derived from
the set of integrity constraints and from the binary relation I. This means that the set of static rules is not the
same in the above two cases. Thus we construct two binary relations IFuture and IPast and two set of static rules
RFuture and RPast.

An action may change the future and the past too, but this happens in different executions (e.g.,
occur(take_pardon(p, 24,21)) and occur(take_pardon(p, 24,25)). If an action changes the past at time point
t 0 < now then in the time interval [t 0,now) we evaluate the set of static rules RPast. At each time t P now we
evaluate the set of static rules RFuture.

Notice that in this paper we do not consider the combination of the concurrent execution of actions, some
of the change refers to the past and some to the future. Such a combination poses difficult problem which will
be addressed in a future work.
5.5. Case 1: Change in the past may affect all the fluents

In this case
F P ¼ ;
F S ¼ F

AcceptanceðS; tÞ � TRUE

420 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
where F is the set of fluents. All fluents may change their true value in the past, the predicate Acceptance is
always true.13 Also there is one set of static rules which is evaluated regardless of whether the effects of an
action change the future or the past. Thus the set of static rules is the same as we have presented in the pre-
vious section. We propose the following algorithm which returns a consistent situation at each time point (the
ramification problem).

Algorithm 1 for constructing a consistent situation

1. At each time point at which some action which changes the truth value of some fluents at time point t 0 in the
past is executed, do: evaluate the dynamic rule which refers to this action, evaluate the static rules (until no
change occurs) and set E = {S1, t 0}, where S1 is the new situation at the smallest time point t 0 to which the
effects of the action are referred.

2. Repeat the execution for the smaller time point t 0 above. Every time an action is executed, add it to set E1.
At every time t00 that change situation into a new situation S2 do:
• If the tuple (S2, t00) is already in E then call the rejection algorithm and go on without the action which it

rejected.
• Else go on until no change occurs

3. At each time point at which no action is executed which change the past do: evaluate the dynamic rule (if

some action executed). Evaluate the static rules until no change occurs.

Notice that set E contains the situations which are produced as effects of the change of the past. This helps
us to understand when there is an infinite loop, which happens when we formulate the same situation at the
same time point. In that case three are two same pairs (S, t) in set E. Set E1 contains the action which takes
place after the execution of the action which changes the past. Thus when there is an infinite loop we must
reject one action which is in set E1. This is achieved by the following algorithm:

The algorithm for the rejecting actions

1. If in the set of actions E1 there are two actions a1,a2 such that a1 � fið½t1; t01�Þ and a2 � :fið½t2; t02�Þ and
occur(a1, t3, t1) and occur(a2, t4, t2) and t2 < t1 < t3 < t4 then reject the a1.

2. Else reject the action which was executed more recently in the current time moment.

Example 1 (continued from Section 5.1). We have the execution
13 No
occurðmisdemeanorðpÞ; 20; 20Þ; occurðtake pardonðpÞ; 24; 21Þ

The time starts at 0 and has the granularity of months. Consider the initial situation:
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½0;1�Þ;
positionðp; 1; 0; 38Þ; salaryðp; 3; 0; 2Þg
At time point 20 the action misdemeanor executes and the new situation becomes
S1 ¼ f:take bonusðp; ½0;1�Þ;:take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; :good employeeðp; ½0;1�Þ; illegalðp; ½20; 25�Þ;
:illegalðp; ½½0; 20�; ½25;1��Þ; positionðp; 1; 20; 58Þ; salaryðp; 3; 20; 22Þg
Time point 22 is the time that a public worker could take increase and promotion. This cannot happen
because s/he is illegal. At time point 24 the situation is
tice that the predicate Acceptance ensures that the fluents which belong to the set of FP do not change their truth value in the past.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 421
S01 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½20; 25�Þ; take salaryðp; ½½0; 20�; ½25;1��Þ;
suspendedðp; ½20; 25�Þ;:suspendedðp; ½½0; 20�; ½25;1��Þ;
:good employeeðp; ½0;1�Þ; illegalðp; ½20; 25�Þ;:illegalðp; ½½0; 20�; ½25;1��Þ;
positionðp; 1; 24; 62Þ; salaryðp; 3; 24; 26Þg
Suppose that at time point 24 the public worker takes pardon which means that for time 21 the public
worker stops to be assumed illegal(occur(take_pardon(p), 24,21)). Now we repeat the execution for time point
21. The new situation at time point 21 is
S ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½20; 25�Þ; take salaryðp; ½½0; 20�; ½25;1��Þ;
suspendedðp; ½20; 25�Þ;:suspendedðp; ½½0; 20�; ½25;1��Þ;
:good employeeðp; ½0;1�Þ; illegalðp; ½20; 21�Þ;:illegalðp; ½½0; 20�; ½21;1��Þ;
positionðp; 1; 21; 59Þ; salaryðp; 3; 21; 23Þg
At time point 22 the following static rule will be evaluated
positionðp; 1; 22; 60Þ ^ :suspendedðp; ½21;1�Þ � positionðp; 2; 22; 0Þ
salaryðp; 3; 22; 24Þ ^ :suspendedðp; ½21;1�Þ � salaryðp; 4; 22; 0Þ.
Now the new situation is
S01 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; :good employeeðp; ½0;1�Þ; illegalðp; ½20; 21�Þ;
:illegalðp; ½½0; 20�; ½21;1��Þ; positionðp; 2; 22; 0Þ; salaryðp; 4; 22; 0Þg
At time point 24 the action take_pardon(occur(take_pardon(p),24,21)) executes again but it does not change
the past because the public worker is not illegal at time point 21. This means that the algorithm does not repeat
the execution from time point 21 but it goes on at time point 25.

Example 3 (continued from Section 5.1).
occurðmisdemeanorðpÞ; 26; 20Þ; occurðtake pardonðpÞ; 27; 22Þ

The time starts at 0 and time has the granularity of months. Consider the initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½0;1�Þ;
positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 24 the actions grant_promotion and grant_increase will be evaluated. Now the new situation is
S01. At time point 26 occurs the action misdemeanor which tells us that the public worker has done something
illegal at time point 20. This means that the situation must change at time point 20 in situation S001. Now we add
(S001,20) in to set E and the action misdemeanor in to set E1.
E ¼ fðS001; 20ÞgE1 ¼ fmisdemeanorg

But at time point 27 is executed the action take_pardon which tells us that the public worker stopped being

illegal at time point 22. Now the new situation is S2.
S2 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; good employeeðp; ½0;1�Þ; illegalðp; ½20; 22�Þ;
:illegalðp; ½½0; 20�; ½22;1��Þ; positionðp; 1; 20; 56Þ; salaryðp; 3; 20; 20Þg
We add the pair (S2,22) in to set E and the action take_pardon in to set E1.

422 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
E ¼ fðS001; 20Þ; ðS2; 22Þg E1 ¼ fmisdemeanor; take pardong

We repeat the execution from time point 22 and at time point 24 the actions grant_promotion and take_sal-

ary must be executed. But at time point 26 we must again execute the action misdemeanor. We know that
occur(misdemeanor(p),26,20) � illegal(p, [20,25]). But at time point 20 situation S001 holds and in that situation
the fluent illegal is true at time point 20, because illegalðp; ½20; 25�Þ 2 S001. This means that the action misde-

meanor does not change the belief about the past and thus the algorithm does not evaluate the above dynamic
rule.

Example 4 (continued from Section 5.1).
occurðmisdemeanorðpÞ; 26; 23Þ; occurðtake pardonðpÞ; 27; 22Þ

Consider the same initial situation as in the previous example.
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½0;1�Þ;
positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
We now have that the actions grant_increase and grant_promotion are executed at time point 24. The new
situation is S01.
S01 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; :good employeeðp; ½0;1�Þ;
:illegalðp; ½0;1�Þ; positionðp; 2; 22; 0Þ; salaryðp; 4; 22; 0Þg
After the execution of the action misdemeanor we repeat the execution for time point 23. The new situation
at time point 23 is S002
S002 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½23; 28�Þ;
take salaryðp; ½½0; 23�; ½28;1��Þ; suspendedðp; ½23; 28�Þ;
:suspendedðp; ½½0; 23�; ½28;1��Þ; :good employeeðp; ½0;1�Þ; illegalðp; ½23; 28�Þ;
:illegalðp; ½½0; 23�; ½28;1��Þ; positionðp; 1; 23; 59Þ; salaryðp; 3; 23; 23Þg
We add ðS002; 23Þ into E and the misdemeanor into E1.
E ¼ fðS002; 23Þg E1 ¼ fmisdemeanorg

At time point 24 we do not execute the two natural actions. After the execution of the action take_pardon at

time point 27 we repeat the execution for time point 22. Now the situation at time point 22 is S2.
S2 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½20; 25�Þ;
take salaryðp; ½½0; 20�; ½25;1��Þ; suspendedðp; ½20; 25�Þ;
:suspendedðp; ½½0; 20�; ½25;1��Þ; good employeeðp; ½0;1�Þ; illegalðp; ½20; 22�Þ;
:illegalðp; ½½0; 20�; ½22;1��Þ; positionðp; 1; 20; 56Þ; salaryðp; 3; 20; 20Þg
We now add the (take_pardon, 22) into E and the take_pardon into E1.
E ¼ fðS002; 23Þ; ðS2; 22Þg E1 ¼ fmisdemeanor; take pardong

We repeat the execution from time point 22 and at time point 24 must execute the actions grant_promotion

and take_salary. But at time point 26 we again execute the action misdemeanor. Now the new situation at time
point 23 is the S002. But ðS002; 23Þ 2 E. Thus we must call the rejection algorithm. This algorithm found that
E1 = {misdemeanor, take_pardon} and
occurðmisdemeanorðpÞ; 26; 23ÞÞ � illegalðp; ½23; 28�Þ
occurðtake pardonðpÞ; 27; 22Þ � :illegalðp; ½22;1�Þ

S3S1

S2 S4

Situation Axis

Time Axis9876543

S0 S00

Fig. 9. The effects in the past.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 423
We observe that 22 < 23 < 26 < 27, which means that the algorithm rejects the action misdemeanor(p). This
means that we do not execute the action misdemeanor(p) for a second time, so the infinite loop is broken.

We now present two formal results for the above algorithm.

Theorem 5.1. The above algorithm always returns a consistent situation in the case that some action could

change all the beliefs about the past.

Proof. Let t be the earliest time at which a change occurs. We must ensure that there is a sequence of consis-
tent situations from t until the current time point.

Assume that an action a takes place in time point t1 and changes the belief about the past in time point t < t1.
In that case we can assume without loss of generality that we take the sequence of situations from t0 (the start of
time) until t, and action a will be executed at time point t and its effects start to hold from this time point.14 Now
it is suffices to prove that all situations from time point t until the current point are consistent (Fig. 9).

As we observe the algorithm at each step (steps 1–3) evaluates the static rules until no change occurs. The
three steps (together) cover all time points. So it is enough to prove that if an integrity constraint is not
satisfied at a time point then there is a static rule which is executable and after its execution the integrity
constraint will be satisfied.

Suppose that at time point t 0 (t < t 0 6 t1) the algorithm returns a situation S. Assume that integrity
constraint Lawj is not satisfied in situation S, and let its CNF be C1 ^ � � � ^ Cn. Then one of the C1, . . . ,Cn is
false. Assume that Ci = f1 _ � � � _ fm is false. Then all fluents fj, j = 1, . . . ,m are false. Assume that fk and fp are
two of these for which (fk, fp) 2 I (by Theorems 4.1 and 4.2 there is at least one such pair). Then for the
algorithm of the production of static rules (steps 3 and 4) we have that for fp it must be the case that:
Gfpðt0; LÞ ¼ G0ð..Þ _ ð:

V
fjðtj; j ¼ 1; . . . ;m; j 6¼ pÞ. If all fluents fj, j = 1, . . . ,m are false then ð:

V
fj;

j ¼ 1; . . . ;m; j 6¼ pÞ is true. Thus Gfpðt0Þ is true. This means that the static rule Gfpðt0; LÞ � fpðLÞ must be
evaluated and thus, fp is true. A contradiction. h

We must prove that the algorithm avoids the infinite loops.

Theorem 5.2. The above algorithm terminates always.

Proof. In order to prove that the algorithm does not go into infinite loops we must prove that:

1. First the execution of static rules returns a consistent situation in a finite number of steps.
2. Second the repeat of the execution of actions (from a time point in the past until now) terminates. h
14 This means that the predicate occur(a, t1, t) is ‘‘equivalent’’ to the predicate occur(a, t, t). For example consider Fig. 9 and assume that
the current time point is 10 and the actual line is the top. We execute the action occur(a1,10,5). Then the new actual line contains situations
S0, S00 until time point 5. This means that in the time before 5 the old and new actual line are the same. At time point 5 the effects of
actions a1 start to hold. Between time points 5 and 10 we must estimate the new actual line (S2,S4). This is equivalent to the execution
occur(a1,5,5) in situation S00, because the actual line will be the same.

424 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
Proof 1. Assume that at time unit t the algorithm does not terminate. Then, there must be an infinite loop.
Assume that S0

t is the initial situation at time t. Then, there is a non-terminating sequence S0
t ; S

1
t ; . . . ; Sk

t ; . . .15

In this proof, the term ‘‘situation’’ means the truth value of the fluents. Thus the transition from one
situation to the next happens only when a fluent changes its truth value.16 Notice that because a static rule is
evaluated only when the corresponding fluent is false, it is not possible that a static rule G(t, t 0) � f(t 0) is
evaluated when fluent f is true in point t. The static rule will be evaluated when f becomes false. Thus the
transition from one situation to the next occurs only when fluent f changes from f to :f .

If F is the number of fluents then there are 2F different situations Thus in the above sequence, there are two
identical situations because of the infinite loop. Without a loss of generality we assume Sl

t ¼ Sk
t , l < k.

Thus in the sequence Sl
t ; . . . ; Sk

t there is at least one fluent f which changes from f to :f and eventually
becomes f again.

Assume that f 0 is one such fluent, and consider the static rules associated with it.
15 Th
16 Th
Gðt; t0Þ � f 0ðL0Þ
Bðt; t00Þ � :f 0ðL00Þ
L0 \ L00 6¼ ;
First suppose that f 0 holds. Then we must evaluate the rule Bðt; t00Þ � :f 0 and afterwards the G(t, t 0) � f 0.
Then one of the following holds:

• At time t the proposition G ^ B must be true. But the conditions G and B are mutually exclusive. A
contradiction.

• There is a sequence of static rules as Theorem 3.2 describes. In that case the integrity constraints are unsat-
isfiable. A contraction (the initial situation satisfies all integrity constraints). h

Proof 2. Assume that the algorithm executes an infinite sequence of actions. Let this happen after the execu-
tion of action a at time point t1 which changes the past at time point t. This mean that there is a sequence of
consistent situations ðS0

t ; tÞ; ðS1
t ; t

1Þ; . . . ; ðSk
t ; t

kÞ; Step 1 of the algorithm adds the pair ðS0
t ; tÞ to the E and the

action a to E1. Each time t 0 that the situation changes to the new situation S 0, step 2a add the pair (S 0, t 0) to E.
Also, when an action take places, step 2 adds it to E1. Thus all the above sequence of pairs is in E.

All the actions executed in the time interval [t, t1] suppose that the earliest reference in the past is t0. Then
t0 < t1, . . . , tn < t1. An infinite loop can only happen if some action is executed in the same situation infinite
times, since the number of action is finite. This means that there is (Sl, tl) = (Sm, tm). In that case the second
time that the tuple (Sl, tl) is produced the algorithm will reject the execution because the same tuple exist twice
in set E. In that case the algorithm rejects the execution of an action (from the set E1) and repeats the
execution without the specific action. This process is repeated until no infinite loop occurs. h
5.6. Case 2: Only some fluent could change in the past

This case is more complex because we must distinguish between fluents that may change in the past, and
fluents that change in the future only. For example, we might specify
F P ¼ fposition; take bonusg
F S ¼ fillegal; suspended; good employee; take salary; salaryg
We must product two different sets of fluent dependencies, one for each category of fluents. In our example,
the first is
e transition from one situation to the next happens after the evolution of one or more static rules.
is mean that each Si

t ¼ FluentHoldðSm; tÞ, for a temporal situation Sm.

17 Th
inputs

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 425
IFuture ¼ fðillegal; suspendedÞ; ðsuspended;:take salaryÞ;

ð:suspended ;:take bonusÞ; ðgood employee;:take bonusÞ;

ð:good employee; take salaryÞ; ð:suspended ; take salaryÞg
The second is referred in the past
IPast ¼ fðillegal; suspendedÞ; ðsuspended ;:take salaryÞ;
ð:good employee; take salaryÞ; ð:suspended ; take salaryÞg
Now the algorithm of product static rules return two sets, one for the future effects and one for the past
effects.17
RFuture ¼ fillegalðp; LÞ � suspendedðp; LÞ; suspendedðp; LÞ � :take salaryðp; LÞ;
:suspendedðp; L1Þ ^ good employeeðp; L2Þ � take bonusðp; L1 \ L2ÞÞ;
:good employeeðp; LÞ � :take bonusðp; LÞ;:suspendedðp; LÞ � take salaryðp; LÞg
and
RPast ¼ fillegalðp; LÞ � suspendedðp; LÞ; suspendedðp; LÞ � :take salaryðp; LÞ;
r:suspendedðp; LÞ � take salaryðp; LÞg

IPast � IFuture

RPast � RFuture
always hold because all fluents can change their truth value in the future. Thus all fluents ‘‘participate’’ in the
producing sets IFuture and RFuture (set of static rules). Only some fluents can change their truth value to the
past. Only these fluents can ‘‘participate’’ in the producing sets IPast and RPast. Thus for each pair (f, f 0) 2 IPast

we have that (f, f 0) 2 IFuture while for each pair (f1, f2) 2 IFuture such that f1 or f2 cannot change its truth value to
the past we have that (f1; f2Þ 62 IPast. Steps 3 and 4 of the algorithm for producing the static rules and the num-
ber of static rules depend on the set of fluent dependencies I. For each pair in I there is a corresponding static
rule. Thus the set RFuture is superset of RPast.

We must extend the algorithm which is present in the previous section in order to solve the ramification
problem in this case. The algorithm returns a sequence of consistent new situations.

Algorithm 2 for constructing a consistent situation
1. At each time point at which some action is executed and changes the truth value of some fluents in the past

do:
(a) Execute the dynamic rule which refers to this action, execute the static rules which belongs to set RPast,

set E = {(S1, t 0)}, where S1 is the new situation at the smallest time point t 0 to which the effects of the
action refer. Then:
(i) If Acceptance(S1, t 0) holds then go on,

(ii) Else reject the execution of the action.

(b) Repeat the execution from the earliest time point to which the effects of the action refer. Every time that

an action a must be executed.
• if it has direct effect to change a fluent which belong in the set FP then reject the action
• else add the action to set E1.
Every time t00 that change situation into a new situation S2 do
(i) If Acceptance(S2, t00) holds then add (S2, t00) to E else call the algorithm of rejection of an action.
e algorithm for deriving static rules is the algorithm which we present in Section 4. This algorithm depends on set I. Given different
(e.g., IPast,IFuture), it will return different sets of static rules.

426 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
(ii) Else if the pair (S2, t00) there is already in E then call the algorithm for rejecting actions and go on
without the action which is rejected.

(iii) Else go on until no change occurs

2. At each time point at which some action which does not change the past executes do: execute the dynamic

rule which refers to this action, execute the static rules which belongs to set RFuture until no change occurs.
3. At each time point t P now execute the static rules of RFuture until no change occur.

The algorithm for the rejecting actions was presented in the previous section.

Example 3 (continued from Section 5.1).
occurðmisdemeanorðpÞ; 26; 20Þ; occurðtake pardonðpÞ; 27; 22Þ

The time starts at 0 and has the granularity of months. Assume the initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½0;1�Þ;
positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 24 the natural actions grant_promotion and grant_increase are executed. Now the new situ-
ation is
S01 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½0;1�Þ;
:suspendedðp; ½0;1�Þ;:good employeeðp; ½0;1�Þ; :illegalðp; ½0;1�Þ;
positionðp; 2; 0; 0Þ; salaryðp; 4; 0; 0Þg
At time point 26 occurs the action misdemeanor which tells us that the public worker did something illegal at
time point 20. So the situation must change at time point 20 as follows:
S001 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½20; 25�Þ; take salaryðp; ½½0; 20�; ½25;1��Þ;
suspendedðp; ½20; 25�Þ;:suspendedðp; ½½0; 20�; ½25;1��Þ;
:good employeeðp; ½0;1�Þ; illegalðp; ½20; 25�Þ;:illegalðp; ½½0; 20�; ½25;1��Þ;
positionðp; 1; 20; 56Þ; salaryðp; 3; 20; 20Þg
Now the actions grant_promotion and grant_increase cannot be executed at time point 24. They will be exe-
cuted at time point 25 which referred to in the past. But if the action grant_promotion executed at time point 25
despite at 24 the fluent position 2 FP changes value in the past (the change happens at time point 24 at which
before the execution of the action misdemeanor the public worker has taken promotion and thus was one posi-
tion greater while after the execution does not take promotion and remains in same position). In order to
avoid this we must reject the execution of action misdemeanor. This must be because the action misdemeanor
disqualifies the action grant_promotion which change the truth value of a fluent which belong in the set FP.

The above algorithm does that because after the execution of action misdemeanor at time 24 situation is the
S001. Before the execution of action misdemeanor at time 24 the situation is S01 and S001 n S01 ¼ fpositiong � F P .
This mean that the predicate ACCEPTANCEðS001; 24Þ ¼ FALSE. Thus the algorithm reject the execution of
action occur(misdemeanor(p),26,20).

Example 2 (continued from Section 5.1). Consider now the following execution:
occurðtake pardonðpÞ; 26; 20Þ

The time start at 0 has the granularity of months. Assume the initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½0; 21�Þ; take salaryðp; ½21;1�Þ
suspendedðp; ½0; 21�Þ;:suspendedðp; ½21;1�Þ; :good employeeðp; ½0;1�Þ; illegalðp; ½0; 26�Þ;
:illegalðp; ½26;1�Þ; positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 427
At time point 21 the static rules which correspond to the fluents suspended, :take salary will be evaluated
and the new situation is
S00 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½21; 26�Þ; take salaryðp; ½26;1�Þ;
suspendedðp; ½21; 26�Þ;:suspendedðp; ½26;1�Þ; :good employeeðp; ½0;1�Þ; illegalðp; ½0; 26�Þ;
:illegalðp; ½26;1�Þ; positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 24 the actions grant_promotion and grant_increase cannot be executed. At time point 26 the
action take_pardon is executed and changes the past at time point 20 (at situation S0). The new situation at
time point 22 is
S01 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½21;1�Þ;
:suspendedðp; ½21;1�Þ;:good employeeðp; ½0;1�Þ; :illegalðp; ½20;1�Þ;
positionðp; 1; 22; 58Þ; salaryðp; 3; 22; 22Þg
Now at time point 24 the preconditions of actions grant_promotion and grant_increase hold, but the action
grant_promotion cannot be executed because it changes the truth value of the fluent position which cannot
change is value in the past. Thus only the action grant_increase will be executed. Now the new situation at
time point 24 is
S1 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½21;1�Þ;
:suspendedðp; ½21;1�Þ;:good employeeðp; ½0;1�Þ; :illegalðp; ½20;1�Þ;
positionðp; 1; 24; 60Þ; salaryðp; 4; 24; 0Þg
Assume the same execution, but the initial situation
S0 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½0; 21�Þ; take salaryðp; ½21;1�Þ;
suspendedðp; ½0; 21�Þ;:suspendedðp; ½21;1�Þ; good employeeðp; ½0;1�Þ; illegalðp; ½0; 26�Þ;
:illegalðp; ½26;1�Þ; positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
The difference is that now the fluent good_employee holds. At time point 21 the static rules which corre-
sponded to the fluents suspended, :take salary will be evaluated and the new situation is
S00 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½21; 26�Þ; take salaryðp; ½26;1�Þ;
suspendedðp; ½21; 26�Þ;:suspendedðp; ½26;1�Þ; good employeeðp; ½0;1�Þ; illegalðp; ½0; 26�Þ;
:illegalðp; ½26;1�Þ; positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 24 the actions grant_promotion and grant_increase cannot execute. At time point 26 the action
take_pardon executes and changes the past at time point 20. The new situation at time point 22 is
S01 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½21;1�Þ;
:suspendedðp; ½21;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½20;1�Þ;
positionðp; 1; 22; 58Þ; salaryðp; 3; 22; 22Þg
After the execution of the static rules RPast the situation becomes:
S0001 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½22;1�Þ;
:suspendedðp; ½22;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½22;1�Þ;
positionðp; 1; 22; 58Þ; salaryðp; 3; 22; 22Þg
This situation is not consistent because the following integrity constraint
:suspendedð..Þ ^ good employee � take bonusð� � �Þ

is violated. Thus we must reject the execution of the action take_pardon. Notice that in the set RFuture there is
the static rule :suspendedðL1Þ ^ good employeeðL2Þ � take bonusðL1 \ L2Þ which is executable in the situation

428 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
S0001 . By Theorem 3.1 we have that when a static rule is executable in a situation then this situation is inconsis-
tent. We use that in order to describe a way to find these inconsistent situations. The following algorithm dis-
covers inconsistent situations.

Algorithm for checking consistency of a situation

1. After the completion of the execution of static rules in set RPast do
(a) In the produced situation try to evaluate the rules which belong to the set RFuturenRPast.
(b) If at least one rule evaluates then the situation is inconsistent.
(c) Else it is consistent.
This algorithm is executed every time that the previous algorithm returns a situation. If it returns an incon-
sistent situation the predicate Acceptance become false.

Theorem 5.3. The above algorithm discovers all inconsistent situations.

Proof. Assume that a situation S is inconsistent but the algorithm returns ‘‘consistent’’. Then there must be an
integrity constraint Lawi which does not hold in S. Assume that Lawi = C1 ^ � � � ^ Cn. Then at least one of the
C1, . . . ,Cn must be false. Assume that Cj is false and Cj = f1 _ � � � _ fm. Thus fl is false for each l = 1, . . . ,m. By
Theorems 4.1 and 4.2 we have at least one pair (fk, fp) 2 I and Cj � fk _ fp _ C0j. There are two cases. First
fp 2 FS. Then by steps 3 and 4 of the algorithm of production of static rules we have that: Gfpðt,..Þ ¼
G0 _ ð:

V
fjðtj; j ¼ 1; . . . ;m; j 6¼ pÞÞ and Gfpðt,..Þ � fp 2 RPast. If all fluents fj, j = 1, . . . ,m are false then

ð:
V

fj; j ¼ 1; . . . ;m; j 6¼ pÞ is true. Thus GfpðtÞ is true. This means that the static rule Gfpðt,..Þ � fpð..Þ must
be evaluated (before the calling of the consistency checking algorithm) and thus, fp is true. Thus Cj is true
and Lawi is satisfied. So the situation return Algorithm 2 which is not inconsistent. A contradiction.

Second case is fp 2 Fp. Then the rule ðGfpðtÞ � fpÞ 62 RPast. Then by steps 3 and 4 of the algorithm of
production of static rules we have that: GfpðtÞ ¼ G0 _ ð:

V
fjðtj; j ¼ 1; . . . ;m; j 6¼ pÞÞ. If all fluents fj,

j = 1, . . . ,m are false then ð:
V

fj; j ¼ 1; . . . ;m; j 6¼ pÞ is true. Thus Gfpðt,..Þ is true (at time point t). So that the
rule is executable in situation S but Algorithm 1 did not evaluate as it does not belong to set RPast. This rule
belongs to RFuture. Thus ðGfpðt,..Þ � fpðt,..ÞÞ 2 ðRFuture n RPastÞ. The algorithm discovered the above static rule
is executable in S and returns inconsistency. A contradiction.18

Now we must prove that the algorithm which was present in the previous section together with the above
algorithm always terminate in a finite number of steps and return a consistent situation.

Theorem 5.4. The algorithms always return a consistent situation

Proof. The above algorithm discovered all the inconsistent situations. The algorithm in the previous section
before returning a situation calls the algorithm for discovery inconsistent situations. This means that it cannot
return a inconsistent situation. If a situation is inconsistent then it call the algorithm of rejection actions. h

Theorem 5.5. Algorithm 2 always returns a consistent situation

Proof. The above algorithm discovered all the inconsistent situations which Algorithm 1 returns. Algorithm 2
before accepting a situation calls the consistency checking algorithm which discovered all inconsistent situa-
tions. This means that it cannot accept an inconsistent situation. h

Theorem 5.6. The algorithms terminate in a finite number of steps.

The proof is similar with Theorem 5.2.
18 We have assume that the algorithm return consistent.

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 429
5.7. Case 3: The effects of changes of the past start to hold from the current time point

First we explain this case using an abstract example.
Consider in Fig. 10. Assume that the top line is the evolution of the world and at time point 11 the action a2

takes place due to the changes the past at time 3. The evolution of the world before the execution of the action
a2 is
startðS0Þ ¼ 0 endðS0Þ ¼ 3

startðS1Þ ¼ 3 endðS1Þ ¼ 5

startðS2Þ ¼ 5 endðS2Þ ¼ 7

startðS3Þ ¼ 7
We now evaluate the dynamic rule which corresponds to the action a2 (at point 3). Then we evaluate the
static rules until the current time point 11. Notice that we do not re-execute the action a1 at time point 5. The
new situation at time point 11 is S4. Now we have that end(S3) = 11 and start(S4) = 11. The situations S5 and
S6 after the end of ‘‘virtual’’ execution do not exist. The evolution of the world after the evolution is
startðS0Þ ¼ 0 endðS0Þ ¼ 3

startðS1Þ ¼ 3 endðS1Þ ¼ 5

startðS2Þ ¼ 5 endðS2Þ ¼ 7

startðS3Þ ¼ 7 endðS3Þ ¼ 11

startðS4Þ ¼ 11
As we observe the effects of the action a2 start to hold from the current time point (time point 11), while it
does not change the evolution of the world in the past (the situations S5 and S6 after the end of ‘‘virtual’’ exe-
cution does not exist).

In this case no fluent changes its truth value in the past. As we already explained we create a ‘‘virtual’’
sequence of situations from a time point in the past until the current time point but we adopt only the last
as the current situation. We assume the past situations as they were before the execution of the action which
gives us information about the past. Notice that in order to create the ‘‘virtual’’ sequence of situations we exe-
cute all the static rules. This happen because we adopt only the last situation and thus no fluent changes its
truth value in the past. The important in this case is to produce a consistent situation which starts to hold from
the current time point and encapsulates the effects which are created if we change the past.

In this case it is not necessary to assume that the situation and action axis are branching. The linear cor-
respondence of Fig. 2 is sufficient. This happens because first we do not change the situation in the past but in
the current time point, and second we do not re-execute actions in the past.

Consider the last execution of the previous chapter. In that execution the action occur(take_par-

don(p),26,22) has been rejected because it has as consequence an inconsistent situation. Now we do not reject
this action because we may execute all static rules and produce a consistent situation for time point 26.
S1 S2 S3 S4

S5 S6

3 54 6 7 9 10 11

a1 a2

SITUATION AXIS

TIME AXIS

ACTIONS AXIS

S4 virtual execution

S0

0 8

Fig. 10. The scenarios of execution.

430 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
Example 2 (continued from Section 5.1).
occurðtake pardonðpÞ; 26; 20Þ

The initial situation.
S0 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½0; 21�Þ; take salaryðp; ½21;1�Þ;
suspendedðp; ½0; 21�Þ;:suspendedðp; ½21;1�Þ; good employeeðp; ½0;1�Þ; illegalðp; ½0; 26�Þ;
:illegalðp; ½26;1�Þ; positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 21 the static rules which corresponded to the fluents suspended, :take salary will be evaluated
and the new situation is
S00 ¼ f:take bonusðp; ½0;1�Þ; :take salaryðp; ½21; 26�Þ; take salaryðp; ½26;1�Þ;
suspendedðp; ½21; 26�Þ;:suspendedðp; ½26;1�Þ; good employeeðp; ½0;1�Þ; illegalðp; ½0; 26�Þ;
:illegalðp; ½26;1�Þ; positionðp; 1; 0; 36Þ; salaryðp; 3; 0; 0Þg
At time point 24 the actions grant_promotion and grant_increase cannot execute. At time point 26 the action
take_pardon executes and changes the past at time point 20. The new situation at time point 22 is
S01 ¼ f:take bonusðp; ½0;1�Þ; take salaryðp; ½21;1�Þ;
:suspendedðp; ½21;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½22;1�Þ;
positionðp; 1; 22; 58Þ; salaryðp; 3; 22; 22Þg
We now can execute all the static rules and the final situation will be
S1 ¼ ftake bonusðp; ½22;1�Þ; take salaryðp; ½21;1�Þ;
:suspendedðp; ½21;1�Þ; good employeeðp; ½0;1�Þ;:illegalðp; ½20;1�Þ;
positionðp; 1; 22; 58Þ; salaryðp; 3; 22; 22Þg
The difference from the above two cases is that there we had start(S1) = 22, while now we want to find a
situation S1 s.t. if no action is executed from time point 22 until now (26), then S1 is the situation in 26. Thus at
time point 26 the new situation is
S2 ¼ ftake bonusðp; ½22;1�Þ; take salaryðp; ½21;1�Þ;
:suspendedðp; ½21;1�Þ; good employeeðp; ½0;1�Þ; :illegalðp; ½20;1�Þ;
positionðp; 1; 26; 62Þ; salaryðp; 3; 26; 26Þg
As we observe at time point 26 the actions grant_promotion and grant_increase must be executed. Thus the
new situation is
S2 ¼ ftake bonusðp; ½22;1�Þ; take salaryðp; ½22;1�Þ;
:suspendedðp; ½22;1�Þ; good employeeðp; ½0;1�Þ;:illegalðp; ½22;1�Þ;
positionðp; 2; 26; 0Þ; salaryðp; 4; 26; 0Þg
We want an algorithm which produces the current consistent situation. The following algorithm addresses
the ramification problem in the last case.

Algorithm 3 for producing a consistent situation

1. If an action (occur(a, t, t1)) which changes the past (t1 < t) is executed then
(a) Execute the dynamic rule at situation S s.t. Actual(S, t1).
(b) Execute the static rules in the new situations until no change occurs.
(c) At each time point until the current time point execute the static rules.
(d) Return the last situation S 0.
(e) Set Actual(S 0, t).

2. Else execute the dynamic rule and afterwards the static rules until no change occurs.

In this case there is no case of infinite loops because we do not re-execute the actions.
Theorem 5.7. The above algorithm returns a consistent situation in the case that the action change the belief
about the past but the effect start to hold from the current time point.

Proof. Assume that the algorithm returns an inconsistent situation.
So there is an integrity constraint which is not satisfied. Assume that integrity constraint Lawj is not

satisfied in one situation. Assume that the CNF of this law is C1 ^ � � � ^ Cn. Then it must be the case that one
of the C1, . . . ,Cn is false. Assume that Ci = f1 _ � � � _ fm is false. Then all fluents fj, j = 1, . . . ,m are false. Then
by Theorems 4.1 and 4.2 there are fluents fk and fp such that (fk, fp) 2 I and Ci � fk _ fp _ C0i. Then by steps 3
and 4 of the algorithm of production of the static rule we have that: Gfpðt,..Þ ¼ G0 _ ð:

V
fjðtj; j ¼ 1; . . . ;

m; j 6¼ pÞÞ. If all fluents fj, j = 1, . . . ,m are false then ð:
V

fj; j ¼ 1; . . . ;m; j 6¼ pÞ is true. Thus Gfpðt,..Þ is true.
This means that the static rule Gfpðt,..Þ � fpð� � �Þ must be evaluated and thus, fp is true. This will happen
because at each step of the above algorithm we evaluate the static rules until no change occurs. Thus at each
time point we evaluate the static rules until no change occur. A contradiction. h

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 431
6. Conclusion and future work

6.1. Summary

In this paper we examine two infamous problems, ramification in the setting of temporal databases.
The ramification problem in temporal databases has many different views depending on the assumptions

one makes. Almost all solutions which have been proposed for the ramification problem are based on the per-
sistence of fluents. This mean that nothing changes except if an action takes places. This assumption simplifies
the solution of the ramification problem, but it is restrictive, because in a temporal reasoning setting the per-
sistence of fluents is unreasonable. This happens because when time consideration are imported, one action
could have as effect that the fluent f hold for t time points after the execution of an action. The solutions based
on the persistence of fluents cannot encapsulate effects like the above. To achieve this we must specify the time
point of an action execution as well as the duration of its effects.

In order to address the ramification problem in temporal databases we propose an extension of the situation
calculus in order to encapsulate the time. We propose a new representation of fluents in order to be able to encap-
sulate the non-persistent effects of actions. More specifically, each fluent f is represented as f(L), which means
that the fluent f is true in the time intervals in the list L. Each element of the list L is a time interval [a, b], a < b.

In a temporal context, we need to describe the direct and indirect effects of an action not only in the
immediately resulting next situation but also possibly for many future or past situations as well. This means
that the world being modeled may change from one situation to another while the direct and/or indirect effects
of an action still hold. Also, in this time span other actions may occur leading to many different situations.

We address the ramification problem in a temporal database when the action changes the beliefs about the
past. The linear correspondences of Fig. 2 cannot represent the correspondence between situations, actions and
time in the case that the effects of the actions refer to past. This happens because after the execution of an action
which changes the past we repeat the execution from the time point (in the past), to which referred the effects of
the action. Thus we need a branching axis for the situation and an action axis. The time axis remains linear. We
propose the correspondence shown in Fig. 6. When an action changes the past we start two new linear axes, one
for the situations and one for the actions. As we observe each time there is a linear line in the branching axis of
situations which is the ‘‘actual’’ line. This line contains the situations which are the history of time point t.
Because we repeat the execution of actions after an action changes the belief about the past there is the problem
of infinite loops. We distinguish three cases and provided a solution for each one of them:

• When an action could change the value of all the fluents in the past. In that case the only problem is which
there are infinite loops.

• When an action could change the value in only some fluents in the past. In that case there are different sets
of fluents. The first set FP contains the fluents which cannot change their truth value in the past, and the

432 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
second set FS contains the fluents which can change their truth value in the past.
In addition to the above problem we must ensure that the fluents which belong to FP do not change their
value in the past. We extended the algorithm which was appropriate for the first case.

• When an action could change the value of all the fluents in the past but the effects affect only the current
situation. In this case it is not necessary to assume that the situation and action axes are branching. The
linear correspondence of Fig. 2 is enough. This happens because we do not change the situation in the past
but in the current time point and because we do not re-execute actions in the past.
6.2. Future work

As a future work we intend to address the ramification problem in the case that two or more actions are
executed concurrently and their effects may refer both in the past and in the future. Assume the following
execution:
occurðgrant bonusðpÞ; 10; 7Þ
occurðbad gradeðpÞ; 10; 11Þ
This means that the following must hold:
take bonusðp; ½½7;1��Þ ^ bad employeeðp; ½½11;1��Þ

This is consistent but
bad employeeðp; ½½11;1��Þ � :take bonusðp; ½½11;1��Þ
Finally the following:
take bonusðp; ½½7;1��Þ ^ :take bonusðp; ½½11;1��Þ

must hold. Now there are two choices. First to reject the execution of the two actions and second to accept
take bonusðp; ½½7; 11��Þ ^ :take bonusðp; ½½11;1��Þ

In that case there is the problem in which situation to execute the dynamic rules, and how to construct the

actual line between the smallest time point in the past (which some actions referred) and the time point in the
future. In our example we first executed the action which referred in the past and after the action which
referred in the future, etc.

Also as a future work we want to examine the ramification problem in the case when the effects of one
action is non-deterministic. For example suppose there is a new action grant_accolate which has as direct
effects to take bonus or take a pardon but not both of them. Consider the following execution:
occurðmisdemeanorðpÞ; 8Þ
occurðgrant accolateðpÞ; 10Þ
occurðgrant promotionðpÞ; 11Þ
As we observe if the action grant_accolate which takes place at time point 10 has as direct effect to take
pardon the public worker p then the action grant_promotion could be executed at time point 11. Else if it
has as direct effect to take bonus the public worker p, then the action grant_promotion cannot be executed
at time point 11.
References

[1] M. Ginsberg, D. Smith, Reasoning about action I: a possible worlds approach, Artificial Intelligence 35 (1988) 165–195.
[2] A.C. Kakas, R.S. Miller, F. Toni, E-RES: reasoning about actions, events and observations, in: Proceedings of LPNMR2001,

Springer-Verlag, Berlin, 2001, pp. 254–266.
[3] A. Kakas, R. Miller, A Simple Declarative Language for Describing Narratives with Actions, The Journal of Logic Programming 31

(1–3) (1997) 157–200 (special issue on reasoning about action and change).

N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434 433
[4] R.A. Kowalski, Database updates in the event calculus, Journal of Logic Programming (1992).
[5] V. Lifshitz, Towards a metatheory of action, in: J.F. Allen, R. Fikes, E. Sandewall, (Eds.), Proceedings of the International

Conference on Principles of Knowledge Representation and Reasoning, Cambridge, MA, 1991, pp. 376–386.
[6] V. Lifshitz, Frames in the space of situations, Artificial Intelligence 46 (1990) 365–376.
[7] V. Lifschitz, Towards a metatheory of action, in: Proceedings of KR�91, Cambridge, MA, 1991, pp. 376–386.
[8] N. McCain, H. Turner, A causal theory of ramifications and qualifications, in: Proceedings of IJCAI-95, Montreal, Canada, August

1995, pp. 1978–1984.
[9] J. McCarthy, P.J. Hayes, Some philosophical problem from the standpoint of artificial intelligence, in: B. Meltzer, D. Mitchie (Eds.),

Machine Intelligence, vol. 4, American Elsevier, 1969, pp. 463–502.
[10] R. Miller, M. Shanahan, The event calculus in classical logic—alternative axiomatisations, Linkping Electronic Articles in Computer

and Information Science 4 (16) (1999).
[11] N. Papadakis, D. Plexousakis, Action theories in temporal databases, in: Proceedings of the 8th Panhellenic Conference on

Informatics, Cyprus, November 2001, pp. 254–264.
[12] N. Papadakis, D. Plexousakis, The ramification and qualification problems in temporal databases, in: Proceedings of the 2nd Hellenic

Conference on AI, Lecture Notes on Artificial Intelligent vol. 2308, 10–11 April 2002, Thessaloniki, Greece, pp. 18–30.
[13] N. Papadakis, D. Plexousakis, Action with duration and constraints: the ramification problem in temporal databases, in: 14th IEEE

ICTAI, 2002 , Washington, DC.
[14] N. Papadakis, D. Plexousakis, Action with duration and constraints: the ramification problem in temporal databases, International

Journal of Artificial Intelligent Tools (IJTAI) (special issue on selected papers of ICTAI 2002), in press.
[15] D. Plexousakis, J. Mylopoulos, Accomodating integrity constraints during database design, in: Proceedings of EDBT 1996, Avignon,

France, 1996, pp. 497–513.
[16] J. Pinto, Temporal reasoning in the situation calculus, Ph.D. thesis, Department of Computer Science, University of Toronto,

January 1994.
[17] J. Pinto, R. Reiter, Temporal reasoning in logic programming: a case for the situation calculus, in: Proceedings of 10th International

Conference on Logic Programming, Budapest, Hungary, June 21–24, 1993.
[18] R. Reiter, Natural actions, concurrency and continuous time in the situation calculus, KR 96, 1996, pp. 2–13.
[19] M. Thielscher, Ramification and causality, Artificial Intelligence 89 (1–2) (1997) 317–364.
[20] M. Thielscher, Reasoning about actions: steady versus stabilizing state constraints, Artificial Intelligence 104 (1988) 339–355.
[21] M. Winslett, Reasoning about action using a possible models approach, in: Proceedings of AAAI-88, Saint Paul, MN, August 1988,

pp. 89–93.
Further reading

[1] C. Elkan, Reasoning about action in first order logic, in: Proceedings of the Conference of the Canadian Society for Computational
Studies in Intelligence (CSCSI), Vancouver, May 1992, pp. 221–227.

[2] A. Fusaoka, Situation calculus on a dense flow of time, in: Proceedings of AAAI-96, 1996, pp. 633–638.

Nikos Papadakis is Visiting Professor of Computer Science at the University of Crete, Greece and researcher at
the Institute of Computer Science, Foundation for Research and Technology—Hellas (ICS-FORTH). He
teaching Databases and Programming and supervise more than 70 graduate thesis. He receives bachelor from
Computer Scieznce Department at the University of Cyprus at 1997, and his M.Sc. and Ph.D. from Computer
Science Department of the University of Crete at 1999 and 2004, respectively. His research interests are: Data-
bases and Artificial intelligence: Integrity constraints, Knowledge Representation and Reasoning, belief revision,
Distributed algorithms: Algorithms models, communication protocols, fault tolerance, Networks: Protocol and
Algorithms for Routing, Resource Management.

Grigoris Antoniou is Professor of Computer Science at the University of Crete, Greece and head of the Infor-
mation Systems Laboratory (ISL) at the Institute of Computer Science, Foundation for Research and Tech-

nology—Hellas (ICS-FORTH). He studied Computer Science at the University of Karlsruhe, Germany, and
earned a Ph.D. in 1987 at the University of Osnabrueck, Germany. Prior to coming to Crete he held professorial
appointments at Griffith University, Australia, and the University of Bremen, Germany. His research interests lie
in the field of theory and application of logic-based knowledge representation. Particular interests include non-
monotonic reasoning, rule-based systems, the semantic web, and web services. He has published over 100 tech-
nical papers in international journals and conference proceedings. Finally he is the author or co-author of three
books published by international publishers, including the forthcoming ‘‘A Semantic Web Primer’’ by the MIT
Press.

434 N. Papadakis et al. / Data & Knowledge Engineering 59 (2006) 397–434
Dimitris Plexousakis is an Associate Professor, Associate Chair and Director of Graduate Studies at the
Department of Computer Science, University of Crete and a Researcher at the Information Systems Laboratory
of the Institute of Computer Science, FORTH in Greece. His research interests span the following areas:
Knowledge Representation, Knowledge Base Design; Distributed Database Systems and Databases on the Web;
the Semantic Web; Formal reasoning systems, applications of artificial intelligence in database systems; Business
process and e-service modeling. He has published over 60 articles in international conferences and journals and
has served on the program committees of numerous international conferences and journal editorial boards. He
was the executive chair of the 9th International Conference on Extending Database Technology (March 14–18,
2004, Heraklion, Greece) and the Program Committee co-Chair of the 3rd International Semantic Web Con-
ference (November 7–11, 2004, Hiroshima, Japan). He is leading the ERCIM Working Group on the Semantic
Web.

	The ramification problem in temporal databases: Changing beliefs about the past
	Introduction
	Definitions
	Previous work
	Our previous work
	Other previous works

	Fluent dependencies
	Changing the belief about the past
	Motivation
	Further extensions to the situation calculus
	Fluent dependencies
	Production of static rules
	Case 1: Change in the past may affect all the fluents
	Case 2: Only some fluent could change in the past
	Case 3: The effects of changes of the past start to hold from the current time point

	Conclusion and future work
	Summary
	Future work

	References
	Further reading

