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Abstract. We outline aspects of querying and updating resources on the
Web and on the Semantic Web, including the development of query and
update languages in course of the REWERSE project. When considering
updates and communication of updates between autonomous sources,
reactive behavior plays an important role such that an event language
is required. This article provides a systematic outline of the intended
research steps towards handling reactivity and evolution on the Web.

1 Introduction

Use of the Web today —commonly known as the “World Wide Web”— mostly
focuses on the page-oriented perspective: most of the Web consists of browsable
HTML pages only. From this point of view, the Web can be seen as a graph
that consists of the resources as nodes, and the hyperlinks form the edges. Here,
queries are stated against individual nodes, or against several nodes, e.g., with
formalisms like F-Logic [16] or Lixto [3]; or in case that the sources are provided
in XHTML, they can be queried by XQuery, XPathLog [17], or Xcerpt [5]. As
such, the Web is mainly seen from its static perspective of autonomous sources,
whereas the behavior of the sources, including active interaction of resources
does not play any important role here.

But there is more on the Web of today than HTML pages. Leaving the
superficial point of view of HTML pages, the Web can be seen as a set of data
sources, some of which are still browsing-oriented, but there are also database-
like resources that can actually be queried. In fact, besides HTML documents
that are accessed as a whole, and in which (query) processing has then to be
done separately, there are XML (including XHTML) data sources, described by
DTDs or XML Schemas, that in general can be queried (e.g., by XPath/XQuery,
XPathLog or Xcerpt). Moreover, specialized information sources (that we call,
abstractly, Web services) exist that provide answers only to a restricted set of
queries that are given abstractly as a set of name-value pairs.

With these representations, the perspective may shift more to the idea of a
Web consisting of (a graph of) information systems. In these information sys-
tems, data extraction may be thought not only in terms of local queries, but also



in terms of global queries that are stated against the Web, or against a group
(or community) of nodes on the Web. Given the highly heterogeneous and au-
tonomous characteristics of the Web, this requires appropriate query languages,
and a way to deal with the integration of data from the various sources. The
aspects of query languages for this Web are discussed below, in Section 2.

But such an infrastructure of autonomous sources should allow for more than
querying. Consider a set of sources of travel agencies and airline companies. It
is important to be capable of querying such a set for, e.g. timetables of flights,
availability of flight tickets, etc. But a Web consisting of information systems
should allow for more. For example: it should allow for drawing conclusions
based on knowledge (e.g. in the form of derivation rules) available on each node;
it should allow for making reservations via a travel agency, and automatically
make the corresponding airline company (and also other travel agencies) aware
of that; it should allow airline companies to change their selling policies, and
have travel agencies automatically aware of those changes; etc. The Web, as we
see it, with such capabilities can be seen as forming an active, “living” infras-
tructure of autonomous systems, where reactivity, evolution and its propagation
plays a central role. Given these requirements, the knowledge of one such system
could be classified into three conceptual levels: facts (e.g. in XML or wrapped in
XML); a knowledge base, given by derivation rules (e.g. marked up in RuleML);
and behavior /reaction rules, specifying which actions are to be taken upon which
event and given what conditions. In this context events may either be internal
events (e.g., updates), or external events (e.g., messages), and actions may in-
clude (local) updates of the knowledge, remote actions (potentially structured by
transactions), synchronization actions, and possibly “blackbox” actions. Since,
for being autonomous, sources may rely on different data models with different
modelling assumptions and languages, an external description of the interface is
also needed.

This view of the Web raises new issues, and requires new languages, the
aspects of which will be outlined in the remainder of the paper. Moreover, we
provide a systematic outline of the intended research steps towards handling re-
activity and evolution on the Web. For reaching this goal, our approach will be to
start from existing technologies and extend them step by step, just as demanded
by the specific needs encountered. In Section 2 we discuss query languages for
the Web. Then, in Sections 3 to 6 we discuss languages for reactivity, evolution
and communication on the (non-semantic) Web. Evolution and Reasoning on
the Semantic Web are then discussed in Section 7.

2 Web Query Languages

2.1 Today’s Web Query Languages

Query languages similar to (but different from) those used and developed for
databases are needed on the Web for easing the retrieval of data on the Web,
or easing the specification of (materialized or non-materialized) views (in the



database sense) and for expressing complex updates, especially intensional up-
dates (i.e., updates of intensional predicates expressed in terms of queries) that
must then be translated into updates of the actual sources.

In addition to user-defined queries, queries play an important role also for
the Web itself: dynamic Web pages (i.e., whose content is generated at query
time) are non-materialized views (i.e., views that are computed at data retrieval
time). Here, closedness of the language is obviously necessary: it is defined over
Web contents, and its output must be valid Web contents.

Design of Web Query Languages. Early Web query languages developed from
query languages for semistructured data, most of them have then been migrated
to XML. The design decisions and experiences of these languages have to be
considered when designing query and manipulation languages for the Web as a
whole. An overview of these can be found in [19]:

Logic programming-style rule-based languages (immediately including an up-
date language) have been presented with e.g. WSL/MSL (Wrapper/Mediator
Specification Language) [12], and F-Logic [16]. Lorel [20] and StruQL [11] fol-
lowed the SQL/OQL-style clause-based design; StruQL was then developed into
XML-QL [10]. Other languages developed from the area of tree matching and
transformations, e.g., UnQL [7], XDuce [13], or YATL [9].

The standard XML languages developed from the experience with the above-
mentioned languages and from the SGML area. XPath has been established
as an addressing language. It is based on path expressions for navigation, ex-
tended with filters. It serves as the base for many other W3C languages in
the XML world. XQuery extends XPath with SQL-like clause-based constructs
FLWOR: FOR ... LET ... WHERE ... ORDER BY ... RETURN to a full-fledged
query language. Variables are bound in the FOR and LET clauses to the answer
sets of XPath expressions. The WHERE clause expresses further conditions, and
the RETURN clause creates an XML structure as a result. While the selection
parts in the FOR and LET clauses are XPath-based, an XML pattern in XML-QL
style is used in the RETURN clause where the variables are embedded into literal
XML and constructors. Proposals for extending XQuery with update constructs
(XUpdate) have been published, e.g., in [22]. As a transformation language,
XSLT follows a completely different idea for providing information from the
Web: Here, transformation rules specify how information is extracted from a
data source.

Recent non-Standard XML Query Languages. The Lixto system [3] also uses
a graphical interface for querying HTML, where a query is developed by in-
teractively selecting nodes from a browser presentation. Internally, Lixto uses a
logic programming language for XML called Elog, based on flattening XML data
into Datalog. XPathLog [17] combines first-order logic, and XPath expressions
extended with variable bindings. It is completely XPath-based both in the rule
body (query part) and in the rule read (update part), thereby defining an update
semantics for XPath expressions.



Xcerpt [5] is a pattern-based language for querying and transforming XML
data. Its basic form follows a clean, rule-based design where the query (matching)
part in the body is separated from the generation part in the rule head. XML
instances are regarded as terms that are matched by a term pattern in the rule
body, generating variable bindings. An extension with updates, called XChange,
is currently designed as a clause-based language.

Comparison of Design Concepts. The existing languages for handling semi-
structured data and XML differ in several facets in terms of the concepts they
use, e.g., access mechanisms and homogeneity of the query and generation part
(patterns, path expressions), underlying data model (graph vs. tree), nature of
the underlying theoretical framework (logic-based or denotational semantics),
and last but not least clause-based or logic-programming-style syntax and se-
mantics. All languages discussed above are rule-based and declarative, generating
variable bindings by a matching/selection part in the “rule body” and then using
these bindings in the “rule head” for generating output or updating the database.
This rule-based nature is more or less explicit: F-Logic, MSL/WSL (Tsimmis),
XPathLog, and Elog use the “:-” Prolog syntax, whereas UnQL, Lorel, StruQL,
XML-QL, XQuery/XUpdate, and Xcerpt cover their rule-like structure in an
SQL-like clause syntax. These clausal languages allow for a straightforward ex-
tension with update constructs.

2.2 Requirements on Query Languages for the Web

Obviously, a Web query language must allow to include explicitly multiple data
sources. For this, queries should also be robust against certain changes in a
data source, e.g., splitting a data source over several ones that are linked by
XLink/XPointer. The execution model must be modular in the sense that it
combines answers contributed by multiple data sources. It must consider that
data sources provide different, possibly restricted, functionality (answering ar-
bitrary queries, providing access to bulk data, answering a fixed set of data).
Thus, closedness is also an important property: query languages are used to de-
fine views that act themselves as virtual data sources, and that must be in the
same format as the other sources.

In the context of the Web, end even more of the Semantic Web, querying goes
much further can “only” accessing the base data, as can e.g. be done by SQL
or XML query languages. Query answering on the Semantic Web in general also
requires to use meta-data, e.g., expressed using RDF or OWL, but maybe also
thesauri (as used in information retrieval and computational linguistics), and
thus must support reasoning about the query, data, and metadata. The actual
forms of reasoning to be applied with RDF, OWL, thesauri, etc., and in general
on the forthcoming Semantic Web are rather unclear today — this is one of the
goals of current research.

For providing a base for such research, flexible, and extensible query lan-
guages including “lightweight reasoning facilities” appear to be a good choice



for a first step towards generic tools for the Semantic Web. For several reasons,
we propose to use rule-based languages for querying;:

Rules provide a natural modularization, and the rule-based paradigm covers
a lot of sub-paradigms for designing a wide range of language types as described
above: SQL and XQuery are actually a form of simple rules (for defining views),
XSLT is rule-based, and languages like Datalog provide a multitude of semantics
for any kinds of reasoning. Coming back to the modularization issue, a simple
form of non-monotonic negation in presence of recursion (such as restriction to
stratified programs) seems to be sufficient for a deductive query language for
the Semantic Web. Additional expressive power can be restricted and extended
by choosing suitable semantics — e.g. recursion is needed for computing closure
relations (as those of RDF and OWL) and can be easily “bought” with using
a fixpoint semantics. In [6] it is shown how the rule-based language Xcerpt can
be used for reasoning on Web meta-data such as RDF and OWL data. In it,
recursive rules are a convenient way to express common forms of reasoning on
the Semantic Web e.g. for traversing several edges relating remote concepts. Such
complex semantics of rule languages are well investigated in logic programming.

Additionally, rule-based languages can easily be extended to updates and in
general to the specification of dynamics on the Web. Here, research on ECA
rules and active databases can be applied and extended.

As another consequence of their modularity, rule-based languages are rela-
tively easy to understand and program.

Modular Design of Language Processors. The use of rule-based languages allows
also for a modular design of language processors. These consist then of two
components: one for the interpretation of rule heads and bodies, and one for
implementing the global semantics for suitably evaluating a set of rules.

The language base will most probably be provided by XML, where the in-
dividual languages are distinguished by their syntax, i.e., the namespaces and
their element names and attribute names. Thus, a generic rule processor will be
able to handle arbitrary rules (not only query rules, but also updates and general
reaction rules) and to apply appropriate processing to each type of rules. This
way, also new languages can be integrated at any time.

3 Local Behavior: Answering Queries and Being Reactive

The simplest activity on the Web is query answering. From the point of view
of the user, querying is a static issue: there is no actual temporal aspect in it
(except possibly a delay). Nevertheless, from the point of view of the resources,
there comes reactivity into play: when answering queries, the resources must
answer in reaction to a query message, and in case that the query is answered in
cooperation of several sources, they must also send messages to other resources.

Such cooperation is in general required when considering communities of
resources on the Web. Even more, cooperation and communication is already
necessary when a resource contains references in any form to another resources.
Two types of cooperation for query answering can be distinguished:



Distributed Query Answering of Ezxplicit Queries. Explicit queries in any XML
query language can be stated against XML resources that are specified by a
DTD or an XML Schema. Such resources can contain references to other XML
resources by XLink elements with XPointers. A model for answering queries
in the presence of XLink references has been investigated in [18]. The actual
evaluation of a query in this model results in (re)active communication of result
sets and/or subqueries between resources. This behavior is a simple form of
reactivity.

Query Answering by Web Services. Web services can also be used for answering
(often only a specific set of) queries. For this, they can either use their local
knowledge (e.g., facts and derivation rules), or they can also contact other re-
sources for answering a query (e.g., a travel agency service that uses the schedules
of trains and flights from several autonomous sources). In this case, the behavior
of the Web service is actually not simply query-answering, but can be seen as
a general (re)active behavior, given by an external interface description (e.g., in
WSDL) that can provide much more functionality than only query answering.
Such Web services are instances of general reactivity: there is a message, and the
resource performs some actions. Moreover, Web services may have an internal
state (e.g., reservation systems) that they update.

For including general reactivity of Web services into the intended reason-
ing on the Semantic Web, a formal specification of their behavior is required.
Here, we distinguish two types of Web services, according to the possibilities of
reasoning about their behavior (and updating it): Web services where a formal
specification of their behavoir exists —either directly rule-based or by any for-
mal method— can be subject to reasoning, whereas other Web services will be
considered as black boxes.

Note that, so far, we have described a mainly non-changing, but active Web
consisting of nearly isolated passive and locally active Web resources. In this set-
ting, evolution on the Web takes place by: either local changes in data sources
via updates (e.g. changing a flight schedule); or local evolution of Web services
by reaction to events due to their own, specified, behavior. However, this sce-
nario already raises a number of issues deserving investigation, and will serve
as our base case for reactivity. From this base case, independent, different di-
mensions can be derived. Namely: the definition of a global model theory and
reasoning about global constraints and consistency aspects based on computing
answers to queries; testcases for basic communication of resources via messages
and reaction rules; expressing and reasoning about general non-state-changing
reactivity on the Web; extension from queries to updates (where updates require
the evaluation of a query e.g. for addressing the actual item to be updated). Such
updates on the XML level will provide our simplest case of dynamics.

4 Updates and Evolution of the Web

Evolution of the Web is a twofold aspect: on today’s Web, evolution means
mainly evolution of individual Web sites that are updated locally. In contrast,



considering the Web as a “living organism” that consists of autonomous data
sources, but that will show a global “behavior” (as already investigated above
for query answering) leads to a notion of evolution of the Web as cooperative
evolution of its individual resources.

In this context, update languages are needed for several tasks, besides simply
updating of the contents of a Web site by its owner, or as a reaction on actions of
some user (e.g. when a user books a flight, the reservation of a seat must be stored
in the underlying database). The updated site can be either the local database of
the respective Web site, but most likely, this is an update to a remote database
(e.g. in the above example when the booking is done via a travel agency, and
the reservation must be forwarded to an update of the carrier company) — seen
as a view update. But update languages must also allow for modifying the data
and behavior of a Web site, e.g. in adaptive Web systems (the user modelling
data must be updated, and the behavior of the system will change).

Thus, when “updating the Web”, two aspects must be taken into account:
there are “local” updates that apply to a given Web site only; and there are
updates in a “distributed” scenario, that must be propagated from one Web site
to another.

In the first case, an update language according to the data model of the re-
spective Web site is required. In the second, there must be a declarative, semantic
framework for generically specifying the update, and additionally, a framework
how to communicate the update (e.g. to Web sites that provide a materialized
view on others’ data) is required.

As already mentioned above, local update languages are in general extensions
of query languages: the query language is used (i) for determining what data is
updated, and (ii) for determining the new value. Note that in both cases, the
respective answer is in general not a single data record or a single value, but can
be a set or — in the XML case — a substructure. Moreover, the value of (ii) can
be dependent on the current item of the answer computed in (i).

Example 1 Consider a Web site of an online shop, where for all articles the
prices without and with VAT are given. An update of the VAT rate to this page
would require to update the prices for all items of an answer set with an in-
dividually computed new price. (obviously, a good design in reality would only
store the net price and compute the gross price by multiplying it with the current
percentage for the VAT.)

So, the local update languages will be directly based on the local query languages
— in most cases, languages for operating on XML data such as XQuery/XUpdate
or Xcerpt/Xchange.

Update languages for the Web are to be based on query languages for the
Web. Using XML as the common date model, these and local languages can
most likely be the same. So, the problem in general (distributed) updates is not
the update language itself, but lays in the communication and propagation of
updates between resources.

Update propagation consists of (i) propagating an update, and (ii) process-
ing/materializing the update at another Web resource. The latter, we have just



seen, is solved by local update languages, so the remaining problem turns out
how to communicate updates on the (Semantic) Web. This problem again is
twofold: (i) infrastructure and organization, and (ii) language. The former will
be dealt with later in Section 6 since it is not directly a language-related issue.
Next, we investigate language aspects of this communication.

5 Languages for Reactive Behavior on the Web

Following a well-known and successful paradigm, we propose to use rules, more
specifically, reactive rules according to the Event-Condition-Action (ECA) paradigm
for the specification of reactivity. An important advantage of them is that the
content of the communication can be separated from the generic semantics of
the rules themselves. Cooperative and reactive behavior is then based on events
(e.g., an update at a data source where possibly others depend on). The depend-
ing resources detect events (either they are delivered explicitly to them, or they
poll them via the communication means of the Web; see next section) Then,
conditions are checked (either simple data conditions, or e.g. tests if the event
is relevant, trustable etc.), which are queries to one or several nodes and are to
be expressed in the proposed query language. Finally, an appropriate action is
taken (e.g., updating own information accordingly). This action can also be for-
mulated as a transactions whose ACID properties gensure that either all actions
in a transaction are performed, or nothing of is done.

Thus, the language for the ECA rules must comprise a language for describing
events (in the “Event” part), the language for queries (in the “Condition” part),
and a language for actions (including updates) and transactions (in the “Action”
part). An important requirement here is, that specification and event detection
is as much declarative and application-level as possible. The design of event
languages should be based on the experiences in the area of active database
systems.

FEvents. An (atomic) event is in general any detectable occurrence on the Web,
i.e., (local) system events, incoming messages including queries and answers,
transactional events (commit, confirmations etc), updates of data anywhere in
the Web, or any occurrences somewhere in an application, that are (possibly) rep-
resented in explicit data, or signalled as the event itself. For these atomic events,
it must also be distinguished between the event itself (carrying application-
specific information), and its metadata, like the type of event (update, temporal
event, receipt of message, ... ), time of occurrence, the time of detection/receipt
(e.g., to refuse it, when it had been received too late), the event origin or its
generator (if applicable; e.g. in terms of its URI).

Reactive rules often do not specify reactions on atomic events, but use the
notion of complez events, e.g., “when E; happened and the E; and E3, but not Fy
after at least 10 minutes, then do A”. Complex events are usually defined in terms
of an event algebra [8,21]. Thus, a declarative language for describing complex
events is required, together with algorithms for handling complex events. This



language should not be concerned with what the information contained in the
event might be, but only with types of events.

So, several integrated languages have to be defined: the surrounding lan-
guage for complex events, a language for atomic events and their metadata, and
languages for expressing the contents of different types of events.

This point, again, calls for modular design — an event processor must be able
to process all kinds of atomic events and to cooperate with the complex event
module (which can be rule-driven by itself), and to forward the event contents
to suitable processors.

A main difference wrt. active database systems is here that on the Web with
its autonomous, often a priori unknown nodes, more information about time
points and identity of event generatoring instances must be present since there
is no centralized, common synchronization.

An aspect here that will become important and has to be tackled, is integra-
bility of the event meta language, the event contents languages, and the query
language. It is desirable that the specification of complex events can be combined
with requirements on the state of resources at given intermediate timepoints,
e.g. “when at timepoint ¢1, a cancellation comes in and somewhere in the past,
a reservation request came in in a timepoint when all seats were booked, then,
the cancellation is charged with an additional fee”. In this case, the complex
event handler has to state a query at the moment when a given event arrives.
For being capable of describing these situations, a logic (and system) that deals
with sequences of events and queries is required. Such approaches have e.g. been
presented in Transaction Logic [4] and in Statelog [15]; we will also investigate
the use of Evolving Logic Programs [1] for this purpose.

The view described up to this point is to result in a rule-based infrastructure
for implementing and reasoning about evolution on the Web. This infrastructure
relies on the detection of (complex) events and the communication of messages
(represented in XML), and on reaction rules that define the behavior of resources
upon detection of events. Local knowledge is defined by facts, derivation rules,
and reaction rules. All of this local knowledge is encoded in XML, and is up-
datable, in the sense that the update language to be developed must be capable
of changing both fact, derivation rules and reactive rules. Here we may rely on
the studies done in the context of logic programming about updating derivation
and reactive rules (e.g. in [2]).

Several research steps must be taken in order to reach these results, besides
the definition and implementation of a global language of rules, events, and
messages covering evolutionary and reactive behavior (in the lines described
above). Namely, one further needs to find and investigate suitable formalizations
for describing the autonomous, distributed nature of this knowledge, and its
change in time, and to express a global semantics and reasoning principles about
the Web Evolution and Reactivity rule language in these formalisms.

For using the resulting infrastructure, possible communication structures in-
side groups of nodes on the Web must be identified and classified. These struc-



tures are essential for having global strategies of propagating the knowledge
among the various nodes, and will be the subject of the next section.

6 Communication Structure and Knowledge Propagation

Communication on the Web as a living organism consisting of autonomous
sources and groups or communities of sources requires knowledge about capa-
bilities and behavior of participating resources. Thus, every resource must be
distinguished by its capabilities, both from the point of view as a knowledge
base, and from a directly functional point (i.e. its interface, e.g. considered as a
Web service). In general, for establishing and maintaining communities, meta-
data about available resources must be communicated, before actual data can
be handled. This general case requires the definition of semantic properties of
nodes (as on the Semantic Web), and is discussed in Section 7. However, several
aspects of the structure for communication and propagation of data can be dis-
cussed, and deserve investigation, even on a non-Semantic Web infrastructure as
the one described up to now.

Without metadata about resources, communication concerning the evolution
of the Web is bound to definite links between resources. In this setting, evolution
takes place if a resource (or its knowledge) evolves locally, and another resource
that depends upon it also evolves (as a reaction).

Example 2 Consider the Website of a vendor of computer parts, where for
each article some technical data and the price is given, and another resource
that compares the offers of several vendors and shows e.g., the cheapest vendor
for all parts etc. In case that a vendor page changes, the comparison page must
also change.

For this to be possible without the recourse to a Semantic Web, the roles
of resources must be predefined. Here resources can be classified according to
their role as information providers/consumers: Some resources only provide in-
formation: these are data “sources” that are updated locally by their maintainers
(e.g., the flight schedule database of the Lufthansa). We call such resources in-
formation sources. Other resources combine information from other resources
according to their own application logic, and that in course provide this infor-
mation (e.g. travel agencies providing packages of flights and train connections).
We call such resources information transformers. A third kind of resources only
uses information from others but are not (or only in small scale) used as infor-
mation providers (e.g., statistics about the average load of flights).

Moreover there must exist knowledge about other resources and their roles,
for evolution to take place. The above roles of resources induce different handlings
of the communication paths. One possibility is to have a registered communication
path, where the “provider” knows about the “client” who uses its data. In another
possibility the user of the information knows his “provider”, but not vice versa.



Additionally, information transformers can be classified according to their
way how their knowledge is represented, and how it is maintained. An informa-
tion transformer may not materialize its knowledge but, rather, answer queries
only by transforming them into queries against sources/transformers via its ap-
plication logic. Alternatively, an information transformer may maintain an own
(materialized) database that is populated with data that is derived from infor-
mation from other sources/transformers.

The application logic of non-materializing transformers is in general specified
Datalog-like where their knowledge base is represented via derivation rules. There
is no internal knowledge except the rule base, thus, answers are always computed
from the current state of the used transformers or sources. There is no knowledge
maintenance problem; on the other hand, such resources totally depend on the
24/7 availability of their information providers.

The application logic of materializing transformers can either be specified in
a Datalog-style, or by reactive rules that say how to update their information
according to incoming messages (or a combination of both). In the latter case,
the resource is more independent from its providers, but the view maintenance
problem comes up.

Using peer-to-peer-communication, the propagation of knowledge between
sources —which is obviously desirable to keep resources up-to-date— can then be
done in two distinct ways:

— Push: an information source/transformer informs registered users of the up-
dates. A directed, targeted propagation of changes by the push strategy is
only possible along registered communication paths. It takes place by ex-
plicit messages, that can be update messages, or just information about
what happened.

— Pull: resources that obtain information from a fixed informer can pull up-
dates by either explicitly asking the informer whether he executed some up-
dates recently, or can regularly update themselves based on queries against
their providers. Communication is based on queries and answers (that are in
fact again sent as messages). Here, continuous query services can be helpful.

For putting to work this form of propagation of knowledge on the Web, even at
a non-semantic level, much work remains to be done. Firstly we have to extend
the basic approach (queries) described in Section 3 to updates: updates of XML
data (using XQuery/XUpdate, XPathLog, or XChange). Here, we have to deal
also with updates “along” XLink references, extending the querying approach
described in [18]. In a next research step, the communication of changes due to
evolution of a resource to other resources by the push strategy will be studied
and implemented. Here, especially the representation of messages in combination
with appropriate reaction rules of the “receiving” source has to be designed. Also,
active rules that implement the pull strategy will be investigated, together with
suitable strategies (e.g. change-log in XML) of information providers.

Note that both in the case of push and pull strategies, the actual reactivity,
i.e., how the instance that is informed reacts on an event, is expressed by ECA
rules as described in the previous section.



7 Evolution and Reasoning on the Semantic Web

The aim of the Semantic Web endeavor is to provide a unified, integrated view
on the Web on a conceptual level by enriching today’s Web data with meta-data.
This meta-data attaches explanations or formalizations of the base data meaning
and thus allows for an automatic retrieval of data or of services offered on the
Web in terms of the data or service descriptions provided by the meta-data.

In our research we assume that the Semantic Web will consist of sets of re-
sources (or communities) that can be accessed by using a common semantic level
(i-e., conceptual model, ontology, and access mechanisms). For an application
area, there can be several such communities. Queries are then stated against
the semantic level that forwards them towards the individual sources (via a
mapping), and that combines the results also according to the semantic level.
Communities can have different intra-community structure, which in course has
implications to the interface towards the user. In a centralized community, there
exists a central resource that does the mapping tasks, and that serves as user
interface for querying. In a non-centralized community, each source performs
the mapping task by itself when it is queried, and (sub)queries are forwarded
to relevant nodes in the community to be answered. The mapping between the
communities must be done by special bridge resources that belong to two or more
communities and that mediate between the ontologies. These bridge resources
will use GLAV-like [14] bidirectional ontology mappings between participating
communities for mapping queries, answers, and also communication messages
between the communities.

The issue of query languages for the Semantic Web, and the research steps
we intend to take in this direction, have already been briefly discussed in Section
2. But the Semantics Web also raises new issues, and opens new possibilities for
studying and building an infrastructure for evolution in the Web:

Example 3 (Update on the Semantic Web) Consider an update in the ti-
metable of Lufthansa that adds a daily flight from Berlin to Timbuktu ot 12:00,
arriving at 20:00. There will be several other resources for whom this information
is relevant. First there are german travel agencies etc. who use the Lufthansa
schedule for their offers. For these, it is probably the case that they are directly
informed, or that they query the LH timetable reqularly. There will also be other
resources that have mo immediate connection to the LH resource. E.g., a taxi
service at Timbuktu can have the rule “when a european airline provides a flight
to Timbuktu, we should provide a car at the airport with a driver who speaks
the language of the country where the plane comes from”. Here, the resource
should somehow be able to detect updates somewhere on the Semantic Web that
are relevant for itself.

For this, it is clear that we need a “global” language for updating and com-
municating updates, and communication strategies how to propagate pieces of
information through the Semantic Web. For languages, we will investigate pos-
sibilities of lifting the above sketched ones in order to be able to work on the



ontological level. For studying communication strategies, i.e. how to propagate
pieces of information through the Semantic Web, we focus on two scenarios:
Firstly, in “controlled” communities, the participating resources are known a pri-
ori and contribute to a common task (e.g. in a tourist information system, which
is one of the prospective testbed scenarios in REWERSE). Second, in “dynamic”
communities the participating resources are not completely known a priori, but
the whole Semantic Web is considered as a potential information source. In this
case, peers that provide a given information must be searched and then queried
to answer a message. Here, search for a given “service” must be organized in a
CORBA-like way - but, in general without a central repository.

The latter case allows to use the union of all information throughout the
Web. In it, the Semantic-property of the Web is crucial for automatically me-
diating between several actual schemata. Moreover, such communities provide
a natural notion of community-global state, as the union of the knowledge in
each community resource. For maintaining the consistency of the global state
in this environment of autonomous resources, appropriate communication and
reasoning mechanisms are needed. These must be able to foster communication
of updates between the participating resources.

Reasoning on (and about) the Semantic Web is an area that deserves further
research on various topics, among which the ones below that we will study in
the course of the REWERSE project; especially the following issues:

Uncertainty and Incomplete Knowledge. The Semantic Web gives the user (and
its resources) an “infinite” feeling (no instance can ever claim to collect all knowl-
edge of the Web as a whole). Thus, “global” reasoning inside the Web must be
based on a “as-far-as-I-know”-logic: all reasoning on the Web has to cope with
uncertainty and incomplete knowledge, and, in case of derived facts in general
also with nonmonotonic “belief” revisions (negation, aggregates).

Dealing with Quality of Information. Obviously, the Web (and also the Semantic
Web) contains inconsistent information - both by simply erroneous or outdated
information. Additionally, many information sources provide opinions, beliefs,
conjectures and speculations. Often, these should also be handled (e.g., for an-
swering questions like “what stocks in automobile industry are recommended
to buy?”). Even, information about (here, we do not mean metadata, but e.g.,
evaluations of the trustworthyness and the quality, or comments about state-
ments of other resources) resources is available. Thus, reasoning has to cope
with inconsistencies, incompleteness, and with modal information.

Inconsistencies and Consistency Management. Inconsistencies can occur inside
the information of a resource (to be avoided), between resources of a “commu-
nity” (in most cases, also to be avoided), and across the whole Web (immanent).
The latter ones cannot be avoided, but must be handled by each resource.

For consistency management, in addition to simply “importing” updates,
resources must be able to apply additional reasoning. There may be the case
that the receiver of an update does not want to implement an update because



he does not believe it. Then, the community-global knowledge becomes either
inconsistent (when dealing with facts), or there are different “opinions” or “pre-
sentations” (e.g., when handling news from different news services). Additionally,
a resource can come to the decision that one of its informers must be replaced by
another one. So, the communities can be subject to internal restructuring (still
sharing the same ontology, but with different communication paths).

The Semantic Web itself also has to act in a self-cleaning way: Resources
that provide erroneous or outdated information can be notified, requested for
update, and potentially sanctioned by others. For doing this, instances with
powerful reasoning capabilities (and equipped with some authority!) are needed.
Communities inside the Semantic Web will turn out to be useful for this kind of
quality management.

Temporal Aspects. Mainly for reasoning about evolution and reactivity in the
Web, a logic for reasoning about several states is needed. We need to be able to
express evolution and reactivity of individual resources, and of the global state.
Here again, two issues will be investigated:

For describing and reasoning about immediate reactions, e.g., for update
propagation and consistency maintenance, only a low number of successive states
is needed. Here, a detailed reasoning on the states is required, and a logic in the
style of classical temporal logics, LTL or CTL with a Kripke semantics based on
a given semantics for individual states, could be used.

On the other hand, reasoning about activities involving a higher number of
states for describing transaction-like activities on the Web, mostly takes place
on a higher level of abstraction. Here, the temporal aspect is dominating over
the actual data, and a logic in the style of Transaction Logic [4] is useful.

8 Conclusions

This article has outlined aspects of querying and updating resources on the Web
and on the Semantic Web and stressed approaches the authors are investigating
in the framework of the REWERSE research project (cf. http://rewerse.net).
Much remains to be done. Firstly, a querying framework has to be selected and
enhanced into a formalism for specifying evolution and reactivity on the Web and
Semantic Web. This has to be done considering conventional Web applications
and query languages as well as the emerging Semantic Web query languages as
well as Semantic Web use cases. Secondly, the approaches proposed have to be
checked against these use cases as well as against other use cases developed in
other contexts, possibly stressing other concerns.
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